Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 15;18(12):3263–3270. doi: 10.1093/emboj/18.12.3263

The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits.

F Duong 1, W Wickner 1
PMCID: PMC1171407  PMID: 10369667

Abstract

prlA mutations in the gene encoding the SecY subunit of the membrane domain of the Escherichia coli preprotein translocase confer many phenotypes: enhanced translocation rates, increased affinity for SecA, diminished requirement for functional leader sequences, reduced proton-motive force (PMF) dependence of preprotein translocation and facilitated translocation of preproteins with folded domains. We now report that both prlA and prlG mutations weaken the associations between the SecY, SecE and SecG subunits of the translocase. This loosened association increases the initiation of translocation by facilitating the insertion of SecA with its bound preprotein but reduces the stimulatory effect of the PMF during the initial step of translocation. Furthermore, the originally isolated prlA4 mutant, which possesses a particularly labile SecYEG complex, acquired a secondary mutation that restored the stability while conserving the flexibility of the complex. Combinations of certain prlA and prlG mutations, known to cause synthetic lethality in vivo, dramatically loosen subunit association and lead to complete disassembly of SecYEG. These findings underscore the importance of the loosened SecYEG association for the Prl phenotypes. We propose a model in which each of the PrlA and PrlG phenotypes derive from this enhanced SecYEG conformational flexibility.

Full Text

The Full Text of this article is available as a PDF (178.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama Y., Kihara A., Tokuda H., Ito K. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J Biol Chem. 1996 Dec 6;271(49):31196–31201. doi: 10.1074/jbc.271.49.31196. [DOI] [PubMed] [Google Scholar]
  2. Bieker K. L., Phillips G. J., Silhavy T. J. The sec and prl genes of Escherichia coli. J Bioenerg Biomembr. 1990 Jun;22(3):291–310. doi: 10.1007/BF00763169. [DOI] [PubMed] [Google Scholar]
  3. Bieker K. L., Silhavy T. J. PrlA (SecY) and PrlG (SecE) interact directly and function sequentially during protein translocation in E. coli. Cell. 1990 Jun 1;61(5):833–842. doi: 10.1016/0092-8674(90)90193-i. [DOI] [PubMed] [Google Scholar]
  4. Bost S., Belin D. prl mutations in the Escherichia coli secG gene. J Biol Chem. 1997 Feb 14;272(7):4087–4093. doi: 10.1074/jbc.272.7.4087. [DOI] [PubMed] [Google Scholar]
  5. Brundage L., Fimmel C. J., Mizushima S., Wickner W. SecY, SecE, and band 1 form the membrane-embedded domain of Escherichia coli preprotein translocase. J Biol Chem. 1992 Feb 25;267(6):4166–4170. [PubMed] [Google Scholar]
  6. Crooke E., Brundage L., Rice M., Wickner W. ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes. EMBO J. 1988 Jun;7(6):1831–1835. doi: 10.1002/j.1460-2075.1988.tb03015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cunningham K., Lill R., Crooke E., Rice M., Moore K., Wickner W., Oliver D. SecA protein, a peripheral protein of the Escherichia coli plasma membrane, is essential for the functional binding and translocation of proOmpA. EMBO J. 1989 Mar;8(3):955–959. doi: 10.1002/j.1460-2075.1989.tb03457.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Danese P. N., Silhavy T. J. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu Rev Genet. 1998;32:59–94. doi: 10.1146/annurev.genet.32.1.59. [DOI] [PubMed] [Google Scholar]
  9. Derman A. I., Puziss J. W., Bassford P. J., Jr, Beckwith J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 1993 Mar;12(3):879–888. doi: 10.1002/j.1460-2075.1993.tb05728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Douville K., Price A., Eichler J., Economou A., Wickner W. SecYEG and SecA are the stoichiometric components of preprotein translocase. J Biol Chem. 1995 Aug 25;270(34):20106–20111. doi: 10.1074/jbc.270.34.20106. [DOI] [PubMed] [Google Scholar]
  11. Driessen A. J., Fekkes P., van der Wolk J. P. The Sec system. Curr Opin Microbiol. 1998 Apr;1(2):216–222. doi: 10.1016/s1369-5274(98)80014-3. [DOI] [PubMed] [Google Scholar]
  12. Driessen A. J. Precursor protein translocation by the Escherichia coli translocase is directed by the protonmotive force. EMBO J. 1992 Mar;11(3):847–853. doi: 10.1002/j.1460-2075.1992.tb05122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duong F., Eichler J., Price A., Leonard M. R., Wickner W. Biogenesis of the gram-negative bacterial envelope. Cell. 1997 Nov 28;91(5):567–573. doi: 10.1016/s0092-8674(00)80444-4. [DOI] [PubMed] [Google Scholar]
  14. Duong F., Wickner W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 1997 May 15;16(10):2756–2768. doi: 10.1093/emboj/16.10.2756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Duong F., Wickner W. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J. 1997 Aug 15;16(16):4871–4879. doi: 10.1093/emboj/16.16.4871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Economou A. Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme. Mol Microbiol. 1998 Feb;27(3):511–518. doi: 10.1046/j.1365-2958.1998.00713.x. [DOI] [PubMed] [Google Scholar]
  17. Economou A., Pogliano J. A., Beckwith J., Oliver D. B., Wickner W. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell. 1995 Dec 29;83(7):1171–1181. doi: 10.1016/0092-8674(95)90143-4. [DOI] [PubMed] [Google Scholar]
  18. Economou A., Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell. 1994 Sep 9;78(5):835–843. doi: 10.1016/s0092-8674(94)90582-7. [DOI] [PubMed] [Google Scholar]
  19. Eichler J., Wickner W. Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5574–5581. doi: 10.1073/pnas.94.11.5574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Emr S. D., Hanley-Way S., Silhavy T. J. Suppressor mutations that restore export of a protein with a defective signal sequence. Cell. 1981 Jan;23(1):79–88. doi: 10.1016/0092-8674(81)90272-5. [DOI] [PubMed] [Google Scholar]
  21. Fikes J. D., Bassford P. J., Jr Novel secA alleles improve export of maltose-binding protein synthesized with a defective signal peptide. J Bacteriol. 1989 Jan;171(1):402–409. doi: 10.1128/jb.171.1.402-409.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Flower A. M., Doebele R. C., Silhavy T. J. PrlA and PrlG suppressors reduce the requirement for signal sequence recognition. J Bacteriol. 1994 Sep;176(18):5607–5614. doi: 10.1128/jb.176.18.5607-5614.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Flower A. M., Osborne R. S., Silhavy T. J. The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. EMBO J. 1995 Mar 1;14(5):884–893. doi: 10.1002/j.1460-2075.1995.tb07070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Francetić O., Hanson M. P., Kumamoto C. A. prlA suppression of defective export of maltose-binding protein in secB mutants of Escherichia coli. J Bacteriol. 1993 Jul;175(13):4036–4044. doi: 10.1128/jb.175.13.4036-4044.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Geller B., Zhu H. Y., Cheng S., Kuhn A., Dalbey R. E. Charged residues render pro-OmpA potential dependent for initiation of membrane translocation. J Biol Chem. 1993 May 5;268(13):9442–9447. [PubMed] [Google Scholar]
  26. Hartmann E., Sommer T., Prehn S., Görlich D., Jentsch S., Rapoport T. A. Evolutionary conservation of components of the protein translocation complex. Nature. 1994 Feb 17;367(6464):654–657. doi: 10.1038/367654a0. [DOI] [PubMed] [Google Scholar]
  27. Huie J. L., Silhavy T. J. Suppression of signal sequence defects and azide resistance in Escherichia coli commonly result from the same mutations in secA. J Bacteriol. 1995 Jun;177(12):3518–3526. doi: 10.1128/jb.177.12.3518-3526.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hönlinger A., Bömer U., Alconada A., Eckerskorn C., Lottspeich F., Dietmeier K., Pfanner N. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J. 1996 May 1;15(9):2125–2137. [PMC free article] [PubMed] [Google Scholar]
  29. Ito K. The major pathways of protein translocation across membranes. Genes Cells. 1996 Apr;1(4):337–346. doi: 10.1046/j.1365-2443.1996.34034.x. [DOI] [PubMed] [Google Scholar]
  30. Joly J. C., Leonard M. R., Wickner W. T. Subunit dynamics in Escherichia coli preprotein translocase. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4703–4707. doi: 10.1073/pnas.91.11.4703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lu H. M., Yamada H., Mizushima S. A proline residue near the amino terminus of the mature domain of secretory proteins lowers the level of the proton motive force required for translocation. J Biol Chem. 1991 May 25;266(15):9977–9982. [PubMed] [Google Scholar]
  32. Meyer T. H., Ménétret J. F., Breitling R., Miller K. R., Akey C. W., Rapoport T. A. The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. J Mol Biol. 1999 Jan 29;285(4):1789–1800. doi: 10.1006/jmbi.1998.2413. [DOI] [PubMed] [Google Scholar]
  33. Mitchell C., Oliver D. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol Microbiol. 1993 Nov;10(3):483–497. doi: 10.1111/j.1365-2958.1993.tb00921.x. [DOI] [PubMed] [Google Scholar]
  34. Nishiyama K., Fukuda A., Morita K., Tokuda H. Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J. 1999 Feb 15;18(4):1049–1058. doi: 10.1093/emboj/18.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nouwen N., de Kruijff B., Tommassen J. Delta mu H+ dependency of in vitro protein translocation into Escherichia coli inner-membrane vesicles varies with the signal-sequence core-region composition. Mol Microbiol. 1996 Mar;19(6):1205–1214. doi: 10.1111/j.1365-2958.1996.tb02466.x. [DOI] [PubMed] [Google Scholar]
  36. Nouwen N., de Kruijff B., Tommassen J. prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5953–5957. doi: 10.1073/pnas.93.12.5953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Osborne R. S., Silhavy T. J. PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J. 1993 Sep;12(9):3391–3398. doi: 10.1002/j.1460-2075.1993.tb06013.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Peters E. A., Schatz P. J., Johnson S. S., Dower W. J. Membrane insertion defects caused by positive charges in the early mature region of protein pIII of filamentous phage fd can be corrected by prlA suppressors. J Bacteriol. 1994 Jul;176(14):4296–4305. doi: 10.1128/jb.176.14.4296-4305.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Plath K., Mothes W., Wilkinson B. M., Stirling C. J., Rapoport T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell. 1998 Sep 18;94(6):795–807. doi: 10.1016/s0092-8674(00)81738-9. [DOI] [PubMed] [Google Scholar]
  40. Pohlschröder M., Murphy C., Beckwith J. In vivo analyses of interactions between SecE and SecY, core components of the Escherichia coli protein translocation machinery. J Biol Chem. 1996 Aug 16;271(33):19908–19914. doi: 10.1074/jbc.271.33.19908. [DOI] [PubMed] [Google Scholar]
  41. Prinz W. A., Boyd D. H., Ehrmann M., Beckwith J. The protein translocation apparatus contributes to determining the topology of an integral membrane protein in Escherichia coli. J Biol Chem. 1998 Apr 3;273(14):8419–8424. doi: 10.1074/jbc.273.14.8419. [DOI] [PubMed] [Google Scholar]
  42. Prinz W. A., Spiess C., Ehrmann M., Schierle C., Beckwith J. Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. EMBO J. 1996 Oct 1;15(19):5209–5217. [PMC free article] [PubMed] [Google Scholar]
  43. Pérez-Pérez J., Barbero J. L., Márquez G., Gutiérrez J. Different PrlA proteins increase the efficiency of periplasmic production of human interleukin-6 in Escherichia coli. J Biotechnol. 1996 Aug 20;49(1-3):245–247. doi: 10.1016/0168-1656(96)83990-3. [DOI] [PubMed] [Google Scholar]
  44. Ramamurthy V., Dapíc V., Oliver D. secG and temperature modulate expression of azide-resistant and signal sequence suppressor phenotypes of Escherichia coli secA mutants. J Bacteriol. 1998 Dec;180(23):6419–6423. doi: 10.1128/jb.180.23.6419-6423.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sako T., Iino T. Distinct mutation sites in prlA suppressor mutant strains of Escherichia coli respond either to suppression of signal peptide mutations or to blockage of staphylokinase processing. J Bacteriol. 1988 Nov;170(11):5389–5391. doi: 10.1128/jb.170.11.5389-5391.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schatz P. J., Beckwith J. Genetic analysis of protein export in Escherichia coli. Annu Rev Genet. 1990;24:215–248. doi: 10.1146/annurev.ge.24.120190.001243. [DOI] [PubMed] [Google Scholar]
  47. Schiebel E., Driessen A. J., Hartl F. U., Wickner W. Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell. 1991 Mar 8;64(5):927–939. doi: 10.1016/0092-8674(91)90317-r. [DOI] [PubMed] [Google Scholar]
  48. Stader J., Gansheroff L. J., Silhavy T. J. New suppressors of signal-sequence mutations, prlG, are linked tightly to the secE gene of Escherichia coli. Genes Dev. 1989 Jul;3(7):1045–1052. doi: 10.1101/gad.3.7.1045. [DOI] [PubMed] [Google Scholar]
  49. Taura T., Yoshihisa T., Ito K. Protein translocation functions of Escherichia coli SecY: in vitro characterization of cold-sensitive secY mutants. Biochimie. 1997 Sep;79(8):517–521. doi: 10.1016/s0300-9084(97)82744-7. [DOI] [PubMed] [Google Scholar]
  50. Weiss J. B., Ray P. H., Bassford P. J., Jr Purified secB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8978–8982. doi: 10.1073/pnas.85.23.8978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wickner W., Leonard M. R. Escherichia coli preprotein translocase. J Biol Chem. 1996 Nov 22;271(47):29514–29516. doi: 10.1074/jbc.271.47.29514. [DOI] [PubMed] [Google Scholar]
  52. van der Wolk J. P., Fekkes P., Boorsma A., Huie J. L., Silhavy T. J., Driessen A. J. PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA-SecY interaction during the initiation of translocation. EMBO J. 1998 Jul 1;17(13):3631–3639. doi: 10.1093/emboj/17.13.3631. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES