Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 15;18(12):3359–3369. doi: 10.1093/emboj/18.12.3359

Pim kinase expression is induced by LTP stimulation and required for the consolidation of enduring LTP.

U Konietzko 1, G Kauselmann 1, J Scafidi 1, U Staubli 1, H Mikkers 1, A Berns 1, M Schweizer 1, R Waltereit 1, D Kuhl 1
PMCID: PMC1171416  PMID: 10369676

Abstract

In animals and several cellular models of synaptic plasticity, long-lasting changes in synaptic strength are dependent on gene transcription and translation. Here we demonstrate that Pim-1, a serine/threonine kinase closely related to Pim-2 and Pim-3, is induced in hippocampus in response to stimuli that evoke long-term potentiation (LTP). Mice deficient for Pim-1 show normal synaptic transmission and short-term plasticity. However, they fail to consolidate enduring LTP even though Pim-2 and Pim-3 are constitutively expressed in the hippocampus and Pim-3 expression is similarly induced by synaptic activity. Thus, expression of Pim-1 is required for LTP. Its level of expression and, consequently, its capacity to phosphorylate target proteins in dendritic and nuclear compartments of stimulated neurons might be a determining factor for the establishment of long-lasting changes in synaptic strength.

Full Text

The Full Text of this article is available as a PDF (635.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel T., Nguyen P. V., Barad M., Deuel T. A., Kandel E. R., Bourtchouladze R. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell. 1997 Mar 7;88(5):615–626. doi: 10.1016/s0092-8674(00)81904-2. [DOI] [PubMed] [Google Scholar]
  2. Abraham W. C., Mason S. E., Demmer J., Williams J. M., Richardson C. L., Tate W. P., Lawlor P. A., Dragunow M. Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience. 1993 Oct;56(3):717–727. doi: 10.1016/0306-4522(93)90369-q. [DOI] [PubMed] [Google Scholar]
  3. Bading H., Greenberg M. E. Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science. 1991 Aug 23;253(5022):912–914. doi: 10.1126/science.1715095. [DOI] [PubMed] [Google Scholar]
  4. Bailey C. H., Bartsch D., Kandel E. R. Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13445–13452. doi: 10.1073/pnas.93.24.13445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bailey C. H., Kandel E. R. Structural changes accompanying memory storage. Annu Rev Physiol. 1993;55:397–426. doi: 10.1146/annurev.ph.55.030193.002145. [DOI] [PubMed] [Google Scholar]
  6. Berns A., Mikkers H., Krimpenfort P., Allen J., Scheijen B., Jonkers J. Identification and characterization of collaborating oncogenes in compound mutant mice. Cancer Res. 1999 Apr 1;59(7 Suppl):1773s–1777s. [PubMed] [Google Scholar]
  7. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  8. Brakeman P. R., Lanahan A. A., O'Brien R., Roche K., Barnes C. A., Huganir R. L., Worley P. F. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature. 1997 Mar 20;386(6622):284–288. doi: 10.1038/386284a0. [DOI] [PubMed] [Google Scholar]
  9. Buckley A. R., Buckley D. J., Leff M. A., Hoover D. S., Magnuson N. S. Rapid induction of pim-1 expression by prolactin and interleukin-2 in rat Nb2 lymphoma cells. Endocrinology. 1995 Dec;136(12):5252–5259. doi: 10.1210/endo.136.12.7588268. [DOI] [PubMed] [Google Scholar]
  10. Curran T., Morgan J. I. Memories of fos. Bioessays. 1987 Dec;7(6):255–258. doi: 10.1002/bies.950070606. [DOI] [PubMed] [Google Scholar]
  11. Cuypers H. T., Selten G., Quint W., Zijlstra M., Maandag E. R., Boelens W., van Wezenbeek P., Melief C., Berns A. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell. 1984 May;37(1):141–150. doi: 10.1016/0092-8674(84)90309-x. [DOI] [PubMed] [Google Scholar]
  12. Deadwyler S. A., Dunwiddie T., Lynch G. A critical level of protein synthesis is required for long-term potentiation. Synapse. 1987;1(1):90–95. doi: 10.1002/syn.890010112. [DOI] [PubMed] [Google Scholar]
  13. Domen J., van der Lugt N. M., Acton D., Laird P. W., Linders K., Berns A. Pim-1 levels determine the size of early B lymphoid compartments in bone marrow. J Exp Med. 1993 Nov 1;178(5):1665–1673. doi: 10.1084/jem.178.5.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Domen J., van der Lugt N. M., Laird P. W., Saris C. J., Clarke A. R., Hooper M. L., Berns A. Impaired interleukin-3 response in Pim-1-deficient bone marrow-derived mast cells. Blood. 1993 Sep 1;82(5):1445–1452. [PubMed] [Google Scholar]
  15. English J. D., Sweatt J. D. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem. 1997 Aug 1;272(31):19103–19106. doi: 10.1074/jbc.272.31.19103. [DOI] [PubMed] [Google Scholar]
  16. Feldman J. D., Vician L., Crispino M., Tocco G., Baudry M., Herschman H. R. Seizure activity induces PIM-1 expression in brain. J Neurosci Res. 1998 Aug 15;53(4):502–509. doi: 10.1002/(SICI)1097-4547(19980815)53:4<502::AID-JNR13>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  17. Feldman J. D., Vician L., Crispino M., Tocco G., Marcheselli V. L., Bazan N. G., Baudry M., Herschman H. R. KID-1, a protein kinase induced by depolarization in brain. J Biol Chem. 1998 Jun 26;273(26):16535–16543. doi: 10.1074/jbc.273.26.16535. [DOI] [PubMed] [Google Scholar]
  18. Frey U., Krug M., Reymann K. G., Matthies H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 1988 Jun 14;452(1-2):57–65. doi: 10.1016/0006-8993(88)90008-x. [DOI] [PubMed] [Google Scholar]
  19. Frey U., Müller M., Kuhl D. A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J Neurosci. 1996 Mar 15;16(6):2057–2063. doi: 10.1523/JNEUROSCI.16-06-02057.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goelet P., Castellucci V. F., Schacher S., Kandel E. R. The long and the short of long-term memory--a molecular framework. 1986 Jul 31-Aug 6Nature. 322(6078):419–422. doi: 10.1038/322419a0. [DOI] [PubMed] [Google Scholar]
  21. Grant S. G. Gene targeting and synaptic plasticity. Curr Opin Neurobiol. 1994 Oct;4(5):687–692. doi: 10.1016/0959-4388(94)90010-8. [DOI] [PubMed] [Google Scholar]
  22. Grant S. G., Silva A. J. Targeting learning. Trends Neurosci. 1994 Feb;17(2):71–75. doi: 10.1016/0166-2236(94)90077-9. [DOI] [PubMed] [Google Scholar]
  23. Hazzalin C. A., Le Panse R., Cano E., Mahadevan L. C. Anisomycin selectively desensitizes signalling components involved in stress kinase activation and fos and jun induction. Mol Cell Biol. 1998 Apr;18(4):1844–1854. doi: 10.1128/mcb.18.4.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Huang Y. Y., Nguyen P. V., Abel T., Kandel E. R. Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn Mem. 1996 Sep-Oct;3(2-3):74–85. doi: 10.1101/lm.3.2-3.74. [DOI] [PubMed] [Google Scholar]
  25. Jonkers J., Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim Biophys Acta. 1996 May 16;1287(1):29–57. doi: 10.1016/0304-419x(95)00020-g. [DOI] [PubMed] [Google Scholar]
  26. Kang H., Schuman E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995 Mar 17;267(5204):1658–1662. doi: 10.1126/science.7886457. [DOI] [PubMed] [Google Scholar]
  27. Kempermann G., Kuhn H. G., Gage F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997 Apr 3;386(6624):493–495. doi: 10.1038/386493a0. [DOI] [PubMed] [Google Scholar]
  28. Konietzko U., Kuhl D. A subtractive hybridisation method for the enrichment of moderately induced sequences. Nucleic Acids Res. 1998 Mar 1;26(5):1359–1361. doi: 10.1093/nar/26.5.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Korte M., Carroll P., Wolf E., Brem G., Thoenen H., Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8856–8860. doi: 10.1073/pnas.92.19.8856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Krug M., Lössner B., Ott T. Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res Bull. 1984 Jul;13(1):39–42. doi: 10.1016/0361-9230(84)90005-4. [DOI] [PubMed] [Google Scholar]
  31. Kuhl D., Skehel P. Dendritic localization of mRNAs. Curr Opin Neurobiol. 1998 Oct;8(5):600–606. doi: 10.1016/s0959-4388(98)80087-1. [DOI] [PubMed] [Google Scholar]
  32. Laird P. W., van der Lugt N. M., Clarke A., Domen J., Linders K., McWhir J., Berns A., Hooper M. In vivo analysis of Pim-1 deficiency. Nucleic Acids Res. 1993 Oct 11;21(20):4750–4755. doi: 10.1093/nar/21.20.4750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Leverson J. D., Koskinen P. J., Orrico F. C., Rainio E. M., Jalkanen K. J., Dash A. B., Eisenman R. N., Ness S. A. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol Cell. 1998 Oct;2(4):417–425. doi: 10.1016/s1097-2765(00)80141-0. [DOI] [PubMed] [Google Scholar]
  34. Liang H., Hittelman W., Nagarajan L. Ubiquitous expression and cell cycle regulation of the protein kinase PIM-1. Arch Biochem Biophys. 1996 Jun 15;330(2):259–265. doi: 10.1006/abbi.1996.0251. [DOI] [PubMed] [Google Scholar]
  35. Link W., Konietzko U., Kauselmann G., Krug M., Schwanke B., Frey U., Kuhl D. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5734–5738. doi: 10.1073/pnas.92.12.5734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lisman J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 1994 Oct;17(10):406–412. doi: 10.1016/0166-2236(94)90014-0. [DOI] [PubMed] [Google Scholar]
  37. Lyford G. L., Yamagata K., Kaufmann W. E., Barnes C. A., Sanders L. K., Copeland N. G., Gilbert D. J., Jenkins N. A., Lanahan A. A., Worley P. F. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron. 1995 Feb;14(2):433–445. doi: 10.1016/0896-6273(95)90299-6. [DOI] [PubMed] [Google Scholar]
  38. Manabe T., Wyllie D. J., Perkel D. J., Nicoll R. A. Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol. 1993 Oct;70(4):1451–1459. doi: 10.1152/jn.1993.70.4.1451. [DOI] [PubMed] [Google Scholar]
  39. Martin K. C., Michael D., Rose J. C., Barad M., Casadio A., Zhu H., Kandel E. R. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron. 1997 Jun;18(6):899–912. doi: 10.1016/s0896-6273(00)80330-x. [DOI] [PubMed] [Google Scholar]
  40. Milner B., Squire L. R., Kandel E. R. Cognitive neuroscience and the study of memory. Neuron. 1998 Mar;20(3):445–468. doi: 10.1016/s0896-6273(00)80987-3. [DOI] [PubMed] [Google Scholar]
  41. Morgan J. I., Cohen D. R., Hempstead J. L., Curran T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science. 1987 Jul 10;237(4811):192–197. doi: 10.1126/science.3037702. [DOI] [PubMed] [Google Scholar]
  42. Nedivi E., Hevroni D., Naot D., Israeli D., Citri Y. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature. 1993 Jun 24;363(6431):718–722. doi: 10.1038/363718a0. [DOI] [PubMed] [Google Scholar]
  43. Nestler E. J., Aghajanian G. K. Molecular and cellular basis of addiction. Science. 1997 Oct 3;278(5335):58–63. doi: 10.1126/science.278.5335.58. [DOI] [PubMed] [Google Scholar]
  44. Nguyen P. V., Kandel E. R. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J Neurosci. 1996 May 15;16(10):3189–3198. doi: 10.1523/JNEUROSCI.16-10-03189.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Osten P., Valsamis L., Harris A., Sacktor T. C. Protein synthesis-dependent formation of protein kinase Mzeta in long-term potentiation. J Neurosci. 1996 Apr 15;16(8):2444–2451. doi: 10.1523/JNEUROSCI.16-08-02444.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Otani S., Abraham W. C. Inhibition of protein synthesis in the dentate gyrus, but not the entorhinal cortex, blocks maintenance of long-term potentiation in rats. Neurosci Lett. 1989 Nov 20;106(1-2):175–180. doi: 10.1016/0304-3940(89)90222-x. [DOI] [PubMed] [Google Scholar]
  47. Parent J. M., Yu T. W., Leibowitz R. T., Geschwind D. H., Sloviter R. S., Lowenstein D. H. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997 May 15;17(10):3727–3738. doi: 10.1523/JNEUROSCI.17-10-03727.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Qian Z., Gilbert M. E., Colicos M. A., Kandel E. R., Kuhl D. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature. 1993 Feb 4;361(6411):453–457. doi: 10.1038/361453a0. [DOI] [PubMed] [Google Scholar]
  49. Quinlan E. M., Halpain S. Postsynaptic mechanisms for bidirectional control of MAP2 phosphorylation by glutamate receptors. Neuron. 1996 Feb;16(2):357–368. doi: 10.1016/s0896-6273(00)80053-7. [DOI] [PubMed] [Google Scholar]
  50. Roberson E. D., English J. D., Sweatt J. D. A biochemist's view of long-term potentiation. Learn Mem. 1996 Jul-Aug;3(1):1–24. doi: 10.1101/lm.3.1.1. [DOI] [PubMed] [Google Scholar]
  51. Saffen D. W., Cole A. J., Worley P. F., Christy B. A., Ryder K., Baraban J. M. Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7795–7799. doi: 10.1073/pnas.85.20.7795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Saris C. J., Domen J., Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991 Mar;10(3):655–664. doi: 10.1002/j.1460-2075.1991.tb07994.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Schwartz J. H. Cognitive kinases. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8310–8313. doi: 10.1073/pnas.90.18.8310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Selten G., Cuypers H. T., Boelens W., Robanus-Maandag E., Verbeek J., Domen J., van Beveren C., Berns A. The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell. 1986 Aug 15;46(4):603–611. doi: 10.1016/0092-8674(86)90886-x. [DOI] [PubMed] [Google Scholar]
  56. Sheng M., Greenberg M. E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990 Apr;4(4):477–485. doi: 10.1016/0896-6273(90)90106-p. [DOI] [PubMed] [Google Scholar]
  57. Sheng M., Kim E. Ion channel associated proteins. Curr Opin Neurobiol. 1996 Oct;6(5):602–608. doi: 10.1016/s0959-4388(96)80091-2. [DOI] [PubMed] [Google Scholar]
  58. Stanton P. K., Sarvey J. M. Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J Neurosci. 1984 Dec;4(12):3080–3088. doi: 10.1523/JNEUROSCI.04-12-03080.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Staubli U., Scafidi J. Studies on long-term depression in area CA1 of the anesthetized and freely moving rat. J Neurosci. 1997 Jun 15;17(12):4820–4828. doi: 10.1523/JNEUROSCI.17-12-04820.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sun F. Y., Costa E., Mocchetti I. Adrenal steroids mediate the increase of hippocampal nerve growth factor biosynthesis following bicuculline convulsions. Neuropsychopharmacology. 1993 May;8(3):219–225. doi: 10.1038/npp.1993.24. [DOI] [PubMed] [Google Scholar]
  61. Sánchez C., Ulloa L., Montoro R. J., López-Barneo J., Avila J. NMDA-glutamate receptors regulate phosphorylation of dendritic cytoskeletal proteins in the hippocampus. Brain Res. 1997 Aug 8;765(1):141–148. doi: 10.1016/s0006-8993(97)00563-5. [DOI] [PubMed] [Google Scholar]
  62. Vanderklish P., Saido T. C., Gall C., Arai A., Lynch G. Proteolysis of spectrin by calpain accompanies theta-burst stimulation in cultured hippocampal slices. Brain Res Mol Brain Res. 1995 Aug;32(1):25–35. doi: 10.1016/0169-328x(95)00057-y. [DOI] [PubMed] [Google Scholar]
  63. Wingett D., Reeves R., Magnuson N. S. Characterization of the testes-specific pim-1 transcript in rat. Nucleic Acids Res. 1992 Jun 25;20(12):3183–3189. doi: 10.1093/nar/20.12.3183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Worley P. F., Bhat R. V., Baraban J. M., Erickson C. A., McNaughton B. L., Barnes C. A. Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. J Neurosci. 1993 Nov;13(11):4776–4786. doi: 10.1523/JNEUROSCI.13-11-04776.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Yamagata K., Andreasson K. I., Kaufmann W. E., Barnes C. A., Worley P. F. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron. 1993 Aug;11(2):371–386. doi: 10.1016/0896-6273(93)90192-t. [DOI] [PubMed] [Google Scholar]
  66. Yip-Schneider M. T., Horie M., Broxmeyer H. E. Transcriptional induction of pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor. Blood. 1995 Jun 15;85(12):3494–3502. [PubMed] [Google Scholar]
  67. te Riele H., Maandag E. R., Clarke A., Hooper M., Berns A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature. 1990 Dec 13;348(6302):649–651. doi: 10.1038/348649a0. [DOI] [PubMed] [Google Scholar]
  68. van Lohuizen M., Verbeek S., Krimpenfort P., Domen J., Saris C., Radaszkiewicz T., Berns A. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell. 1989 Feb 24;56(4):673–682. doi: 10.1016/0092-8674(89)90589-8. [DOI] [PubMed] [Google Scholar]
  69. van der Lugt N. M., Domen J., Verhoeven E., Linders K., van der Gulden H., Allen J., Berns A. Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J. 1995 Jun 1;14(11):2536–2544. doi: 10.1002/j.1460-2075.1995.tb07251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES