Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Feb 15;154(2):423–432. doi: 10.1042/bj1540423

Preparation and properties of mitochondria derived from synaptosomes.

J C Lai, J B Clark
PMCID: PMC1172723  PMID: 938457

Abstract

A method has been developed whereby a fraction of rat brain mitochondria (synaptic mitochondria) was isolated from synaptosomes. This brain mitochondrial fraction was compared with the fraction of "free" brain mitochondria (non-synaptic) isolated by the method of Clark & Nicklas (1970). (J. Biol. Chem. 245, 4724-4731). Both mitochondrial fractions are shown to be relatively pure, metabolically active and well coupled. 2. The oxidation of a number of substrates by synaptic and non-synaptic mitochondria was studied and compared. Of the substrates studied, pyruvate plus malate was oxidized most rapidly by both mitochondrial populations. However, the non-synaptic mitochondria oxidized glutamate plus malate almost twice as rapidly as the synaptic mitochondria. 3. The activities of certain tricarboxylic acid-cycle and related enzymes in synaptic and non-synaptic mitochondria were determined. Citrate synthase (EC 4.1.3.7), isocitrate dehydrogenase (EC 1.1.1.41) and malate dehydrogenase (EC 1.1.1.37) activities were similar in both fractions, but pyruvate dehydrogenase (EC 1.2.4.1) activity in non-synaptic mitochondria was higher than in synaptic mitochondria and glutamate dehydrogenase (EC 1.4.1.3) activity in non-synaptic mitochondria was lower than that in synaptic mitochondria. 4. Comparison of synaptic and non-synaptic mitochondria by rate-zonal separation confirmed the distinct identity of the two mitochondrial populations. The non-synaptic mitochondria had higher buoyant density and evidence was obtained to suggest that the synaptic mitochondria might be heterogeneous. 5. The results are also discussed in the light of the suggested connection between the heterogeneity of brain mitochondria and metabolic compartmentation.

Full text

PDF
427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALAZS R. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS. Biochem J. 1965 May;95:497–508. doi: 10.1042/bj0950497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balázs R., Dahl D., Harwood J. R. Subcellular distribution of enzymes of glutamate metabolism in rat brain. J Neurochem. 1966 Oct;13(10):897–905. doi: 10.1111/j.1471-4159.1966.tb10285.x. [DOI] [PubMed] [Google Scholar]
  3. Barondes S. H. Synaptic macromolecules: identification and metabolism. Annu Rev Biochem. 1974;43(0):147–168. doi: 10.1146/annurev.bi.43.070174.001051. [DOI] [PubMed] [Google Scholar]
  4. Blokhuis G. G.D., Veldstra H. Heterogeneity of mitochondria in rat brain. FEBS Lett. 1970 Dec;11(3):197–199. doi: 10.1016/0014-5793(70)80527-0. [DOI] [PubMed] [Google Scholar]
  5. Bradford H. F. Respiration in vitro of synaptosomes from mammalian cerebral cortex. J Neurochem. 1969 May;16(5):675–684. doi: 10.1111/j.1471-4159.1969.tb06444.x. [DOI] [PubMed] [Google Scholar]
  6. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  7. Clark J. B., Land J. M. Differential effects of 2-oxo acids on pyruvate utilization and fatty acid synthesis in rat brain. Biochem J. 1974 Apr;140(1):25–29. doi: 10.1042/bj1400025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark J. B., Nicklas W. J. The metabolism of rat brain mitochondria. Preparation and characterization. J Biol Chem. 1970 Sep 25;245(18):4724–4731. [PubMed] [Google Scholar]
  9. Cotman C. W., Matthews D. A. Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochim Biophys Acta. 1971 Dec 3;249(2):380–394. doi: 10.1016/0005-2736(71)90117-9. [DOI] [PubMed] [Google Scholar]
  10. De Robertis E. Ultrastructure and cytochemistry of the synaptic region. The macromolecular components involved in nerve transmission are being studied. Science. 1967 May 19;156(3777):907–914. doi: 10.1126/science.156.3777.907. [DOI] [PubMed] [Google Scholar]
  11. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  12. GRAY E. G., WHITTAKER V. P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat. 1962 Jan;96:79–88. [PMC free article] [PubMed] [Google Scholar]
  13. JOHNSON M. K., WHITTAKER V. P. LACTATE DEHYDROGENASE AS A CYTOPLASMIC MARKER IN BRAIN. Biochem J. 1963 Sep;88:404–409. doi: 10.1042/bj0880404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Land J. M., Clark J. B. Effect of phenylpyruvate on enzymes involved in fatty acid synthesis in rat brain. Biochem J. 1973 Jun;134(2):545–555. doi: 10.1042/bj1340545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meijer A. J., Van Dam K. The metabolic significance of anion transport in mitochondria. Biochim Biophys Acta. 1974 Dec 30;346(3-4):213–244. doi: 10.1016/0304-4173(74)90001-9. [DOI] [PubMed] [Google Scholar]
  17. Neidle A., van den Berg C. J., Grynbaum A. The heterogeneity of rat brain mitochondria isolated on continuous sucrose gradients. J Neurochem. 1969 Feb;16(2):225–234. doi: 10.1111/j.1471-4159.1969.tb05940.x. [DOI] [PubMed] [Google Scholar]
  18. Nicklas W. J., Clark J. B., Williamson J. R. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate. Biochem J. 1971 Jun;123(1):83–95. doi: 10.1042/bj1230083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  20. SALGANICOFF L., DEROBERTIS E. SUBCELLULAR DISTRIBUTION OF THE ENZYMES OF THE GLUTAMIC ACID, GLUTAMINE AND GAMMA-AMINOBUTYRIC ACID CYCLES IN RAT BRAIN. J Neurochem. 1965 Apr;12:287–309. doi: 10.1111/j.1471-4159.1965.tb06766.x. [DOI] [PubMed] [Google Scholar]
  21. Salganicoff L., Koeppe R. E. Subcellular distribution ot pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J Biol Chem. 1968 Jun 25;243(12):3416–3420. [PubMed] [Google Scholar]
  22. Whittaker V. P., Michaelson I. A., Kirkland R. J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem J. 1964 Feb;90(2):293–303. doi: 10.1042/bj0900293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Whittaker V. P. The morphology of fractions of rat forebrain synaptosomes separated on continuous sucrose density gradients. Biochem J. 1968 Jan;106(2):412–417. doi: 10.1042/bj1060412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolfe L. S., Morgan I. G., Gombos G. Isolation of plasma membranes from rat brain. Biochim Biophys Acta. 1971 Sep 14;241(3):737–751. doi: 10.1016/0005-2736(71)90002-2. [DOI] [PubMed] [Google Scholar]
  25. van Kempen G. M., van den Berg C. J., van der Helm H. J., Veldstra H. Intracellular localization of glutamate decarboxylase, gamma-aminobutyrate transaminase and some other enzymes in brain tissue. J Neurochem. 1965 Jul;12(7):581–588. doi: 10.1111/j.1471-4159.1965.tb04250.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES