Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Jun;128(2):367–375. doi: 10.1042/bj1280367

Lysosomal nature of hormonally induced enzymes in wheat aleurone cells

R A Gibson 1, L G Paleg 1
PMCID: PMC1173772  PMID: 5084795

Abstract

The subcellular distribution of the enzymes α-amylase, protease and ribonuclease in wheat aleurone layers after treatment with gibberellic acid was determined by differential centrifugation. Of the α-amylase 56% was precipitable from cell homogenates, indicating that it is a particulate enzyme. Similar results were recorded with protease. Particulate α-amylase showed distinct structural latency, and membrane-rupturing mechanical or chemical treatments were required to release the enzyme in an active form; the results were completely analogous to results with lysosomal enzymes found in animal tissues. The identification of the hormonally induced enzymes as lysosomal suggests that the hormonal mechanism may be more closely associated with extracellular enzyme synthesis rather than with nucleic acid metabolism.

Full text

PDF
370

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEAUFAY H., DE DUVE C. Tissue fractionation studies. 9. Enzymic release of bound hydrolases. Biochem J. 1959 Dec;73:604–609. doi: 10.1042/bj0730604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRIGGS D. E. Simplification of the assay of enzymes using non-linear reaction-progress graphs. Enzymologia. 1962 Feb 15;24:97–104. [PubMed] [Google Scholar]
  3. Breidenbach R. W., Beevers H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun. 1967 May 25;27(4):462–469. doi: 10.1016/s0006-291x(67)80007-x. [DOI] [PubMed] [Google Scholar]
  4. Bulova S. I., Burka E. R. Biosynthesis of nonglobin protein by membrane-bound ribosomes in reticulocytes. J Biol Chem. 1970 Oct 10;245(19):4907–4912. [PubMed] [Google Scholar]
  5. Chrispeels M. J., Varner J. E. Hormonal control of enzyme synthesis: on the mode of action of gibberellic Acid and abscisin in aleurone layers of barley. Plant Physiol. 1967 Jul;42(7):1008–1016. doi: 10.1104/pp.42.7.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins G. G., Jenner C. F., Paleg L. G. The levels of soluble nucleotides in wheat aleurone tissue. Plant Physiol. 1972 Mar;49(3):398–403. doi: 10.1104/pp.49.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins G. G., Jenner C. F., Paleg L. G. The metabolism of soluble nucleotides in wheat aleurone layers treated with gibberellic Acid. Plant Physiol. 1972 Mar;49(3):404–410. doi: 10.1104/pp.49.3.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DE DUVE C., WATTIAUX R. Tissue fractionation studies. VII. Release of bound hydrolases by means of triton X-100. Biochem J. 1956 Aug;63(4):606–608. doi: 10.1042/bj0630606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evins W. H., Varner J. E. Hormone-controlled synthesis of endoplasmic reticulum in barley aleurone cells. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1631–1633. doi: 10.1073/pnas.68.7.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Filner P., Varner J. E. A test for de novo synthesis of enzymes: density labeling with H2O18 of barley alpha-amylase induced by gibberellic acid. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1520–1526. doi: 10.1073/pnas.58.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ganoza M. C., Williams C. A. In vitro synthesis of different categories of specific protein by membrane-bound and free ribosomes. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1370–1376. doi: 10.1073/pnas.63.4.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacobsen J. V., Varner J. E. Gibberellic Acid-induced synthesis of protease by isolated aleurone layers of barley. Plant Physiol. 1967 Nov;42(11):1596–1600. doi: 10.1104/pp.42.11.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Paleg L. G. Physiological Effects of Gibberellic Acid: I. On Carbohydrate Metabolism and Amylase Activity of Barley Endosperm. Plant Physiol. 1960 May;35(3):293–299. doi: 10.1104/pp.35.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Redman C. M. Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver. J Biol Chem. 1969 Aug 25;244(16):4308–4315. [PubMed] [Google Scholar]
  16. SHUSTER L., GIFFORD R. H. Changes in 3'-nucleotidase during the germination of wheatembryos. Arch Biochem Biophys. 1962 Mar;96:534–540. doi: 10.1016/0003-9861(62)90332-6. [DOI] [PubMed] [Google Scholar]
  17. Vaes G. On the mechanisms of bone resorption. The action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells. J Cell Biol. 1968 Dec;39(3):676–697. doi: 10.1083/jcb.39.3.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WILSON C. M. Chromatographic separation of ribonucleases in corn. Biochim Biophys Acta. 1963 Feb 26;68:177–184. doi: 10.1016/0006-3002(63)90133-1. [DOI] [PubMed] [Google Scholar]
  19. Yatsu L. Y., Jacks T. J. Association of lysosomal activity with aleurone grains in plant seeds. Arch Biochem Biophys. 1968 Mar 20;124(1):466–471. doi: 10.1016/0003-9861(68)90354-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES