Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Mar;462:261–273. doi: 10.1113/jphysiol.1993.sp019554

Autoregulation and non-homeostatic behaviour of renal blood flow in conscious dogs.

P B Persson 1, H Ehmke 1, H R Kirchheim 1, B Janssen 1, J E Baumann 1, A Just 1, B Nafz 1
PMCID: PMC1175300  PMID: 8331583

Abstract

1. Spontaneously occurring haemodynamic variations within 4 h affecting renal blood flow (RBF) were compared with externally induced short changes of renal artery pressure (RAP) in conscious resting dogs. 2. In all animals in which RAP was servo-controlled (n = 6), perfect autoregulation of RBF was observed. 3. In all 4 h recordings of spontaneous renal blood flow (n = 9), certain combinations of blood pressure and blood flow occurred remarkably frequently as indicated by three-dimensional frequency distributions. 4. Cluster analysis demonstrated significant differences between these areas of accumulation (P < 0.001). The average number of 'set points' per 4 h session was 3.1 +/- 0.3. 5. The shift from one set point to another is probably mediated by multiple control systems impinging on renal haemodynamics as suggested by 1/f fluctuations. 6. In seven dogs, an additional renal venous catheter allowed measurements of the arterial-venous (A-V) oxygen partial pressure (PO2) difference as an indicator of the renal metabolic demand. An inverse relationship between A-V PO2 difference and RBF (Y = X(-0.034) + 40.9, r = -0.9, P < 0.001) was found, indicating that the metabolic demands vary little (if at all) between the different set points. 7. The presented data suggest a modified view of renal homeostasis. There exist distinct combinations between RBF and RAP, which are very stable. Autoregulation merely buffers the fluctuations around these set points.

Full text

PDF
264

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ehmke H., Persson P. B., Seyfarth M., Kirchheim H. R. Neurogenic control of pressure natriuresis in conscious dogs. Am J Physiol. 1990 Sep;259(3 Pt 2):F466–F473. doi: 10.1152/ajprenal.1990.259.3.F466. [DOI] [PubMed] [Google Scholar]
  2. Goldberger A. L. Is the normal heartbeat chaotic or homeostatic? News Physiol Sci. 1991 Apr;6:87–91. doi: 10.1152/physiologyonline.1991.6.2.87. [DOI] [PubMed] [Google Scholar]
  3. Gross R., Kirchheim H. Effects of bilateral carotid and auditory stimulation on renal blood flow and sympathetic nerve activity in the conscious dog. Pflugers Arch. 1980 Feb;383(3):233–239. doi: 10.1007/BF00587524. [DOI] [PubMed] [Google Scholar]
  4. Gross R., Kirchheim H., Ruffmann K. Effect of carotid occlusion and of perfusion pressure on renal function in conscious dogs. Circ Res. 1981 Jun;48(6 Pt 1):777–784. doi: 10.1161/01.res.48.6.777. [DOI] [PubMed] [Google Scholar]
  5. Iversen B. M., Sekse I., Ofstad J. Resetting of renal blood flow autoregulation in spontaneously hypertensive rats. Am J Physiol. 1987 Mar;252(3 Pt 2):F480–F486. doi: 10.1152/ajprenal.1987.252.3.F480. [DOI] [PubMed] [Google Scholar]
  6. Kastner P. R., Hall J. E., Guyton A. C. Control of glomerular filtration rate: role of intrarenally formed angiotensin II. Am J Physiol. 1984 Jun;246(6 Pt 2):F897–F906. doi: 10.1152/ajprenal.1984.246.6.F897. [DOI] [PubMed] [Google Scholar]
  7. Keil J., Lehnfeld R., Reinhardt H. W., Mohnhaupt R., Kaczmarczyk G. Acute effects of angiotensin II on renal haemodynamics and excretion in conscious dogs. Ren Physiol Biochem. 1989 Jul-Aug;12(4):238–249. doi: 10.1159/000173197. [DOI] [PubMed] [Google Scholar]
  8. Marsh D. J., Osborn J. L., Cowley A. W., Jr 1/f fluctuations in arterial pressure and regulation of renal blood flow in dogs. Am J Physiol. 1990 May;258(5 Pt 2):F1394–F1400. doi: 10.1152/ajprenal.1990.258.5.F1394. [DOI] [PubMed] [Google Scholar]
  9. Murray B. M., Brown G. P. Effect of protein intake on the autoregulation of renal blood flow. Am J Physiol. 1990 Jan;258(1 Pt 2):F168–F174. doi: 10.1152/ajprenal.1990.258.1.F168. [DOI] [PubMed] [Google Scholar]
  10. Osborn J. L., Kinstetter D. D. Effects of altered NaCl intake on renal hemodynamic and renin release responses to RNS. Am J Physiol. 1987 Nov;253(5 Pt 2):F976–F981. doi: 10.1152/ajprenal.1987.253.5.F976. [DOI] [PubMed] [Google Scholar]
  11. Persson P. B., Ehmke H., Nafz B., Kirchheim H. R. Sympathetic modulation of renal autoregulation by carotid occlusion in conscious dogs. Am J Physiol. 1990 Feb;258(2 Pt 2):F364–F370. doi: 10.1152/ajprenal.1990.258.2.F364. [DOI] [PubMed] [Google Scholar]
  12. Persson P. B., Ehmke H., Nafz B., Lang R., Hackenthal E., Nobiling R., Dietrich M. S., Kirchheim H. R. Effects of neuropeptide-Y on renal function and its interaction with sympathetic stimulation in conscious dogs. J Physiol. 1991 Dec;444:289–302. doi: 10.1113/jphysiol.1991.sp018878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roman R. J., Cowley A. W., Jr, Garcia-Estañ J., Lombard J. H. Pressure-diuresis in volume-expanded rats. Cortical and medullary hemodynamics. Hypertension. 1988 Aug;12(2):168–176. doi: 10.1161/01.hyp.12.2.168. [DOI] [PubMed] [Google Scholar]
  14. Rosivall L., Youngblood P., Navar L. G. Renal autoregulatory efficiency during angiotensin-converting enzyme inhibition in dogs on a low sodium diet. Ren Physiol. 1986;9(1-2):18–28. doi: 10.1159/000173072. [DOI] [PubMed] [Google Scholar]
  15. SHIPLEY R. E., STUDY R. S. Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Am J Physiol. 1951 Dec;167(3):676–688. doi: 10.1152/ajplegacy.1951.167.3.676. [DOI] [PubMed] [Google Scholar]
  16. Young D. B., Lin H. B., LeDuff J. K. Regulation of renin release and renal hemodynamics during acute and chronic verapamil administration. Am J Physiol. 1990 Apr;258(4 Pt 2):F1105–F1109. doi: 10.1152/ajprenal.1990.258.4.F1105. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES