Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992;453:1–13. doi: 10.1113/jphysiol.1992.sp019214

The role of endogenous angiotensin II in the regulation of renal haemodynamics and proximal fluid reabsorption in the rat.

J Zhuo 1, D Thomas 1, P J Harris 1, S L Skinner 1
PMCID: PMC1175543  PMID: 1464825

Abstract

1. The influence of endogenous angiotensin II (AII) on renal haemodynamics and tubular function was examined by clearance and micropuncture methods in anaesthetized rats during AII receptor blockade with the non-peptide antagonist DuP 753 (50 micrograms kg-1 min-1 i.v.). 2. Mean arterial pressure was reduced slightly (-5 +/- 2 mmHg) while filtration fraction and glomerular filtration rate rose by 30% without changes in renal plasma flow (RPF) or renal vascular resistance (RVR). 3. Fractional proximal fluid reabsorption (calculated from lithium clearance) fell from 73 to 64% (P < 0.01) and fractional distal sodium reabsorption decreased from 98 to 94% (P < 0.01). 4. Urine flow rate more than doubled, sodium output increased 4-fold and plasma renin concentration rose 8-fold while potassium excretion remained unchanged. 5. Proximal tubular fluid reabsorption (Jv) as measured by shrinking split-droplet micropuncture decreased by 21% (P < 0.01) during infusion of DuP 753 compared with 22.5% (P < 0.01) during converting enzyme inhibition by enalaprilat (MK422). 6. Responses to DuP 753 were similar to those previously documented with converting enzyme inhibitors except that DuP 753 failed to raise RPF. It is concluded that generation of intrarenal vasodilator paracrines has confounded conclusions about the renal action of converting enzyme inhibitors and we propose that in anaesthetized rats, endogenous angiotensin II (AII) has its major renal influences on glomerular filtration and proximal fluid reabsorption with little effect on renal vascular resistance.

Full text

PDF
4

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylis C., Brenner B. M. Modulation by prostaglandin synthesis inhibitors of the action of exogenous angiotensin II on glomerular ultrafiltration in the rat. Circ Res. 1978 Dec;43(6):889–898. doi: 10.1161/01.res.43.6.889. [DOI] [PubMed] [Google Scholar]
  2. Carmines P. K., Rosivall L., Till M. F., Navar L. G. Renal hemodynamic effects of captopril in anesthetized sodium-restricted dogs. Relative contributions of prostaglandin stimulation and suppressed angiotensin activity. Ren Physiol. 1983;6(6):281–287. doi: 10.1159/000172913. [DOI] [PubMed] [Google Scholar]
  3. Chiu A. T., McCall D. E., Price W. A., Wong P. C., Carini D. J., Duncia J. V., Wexler R. R., Yoo S. E., Johnson A. L., Timmermans P. B. Nonpeptide angiotensin II receptor antagonists. VII. Cellular and biochemical pharmacology of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther. 1990 Feb;252(2):711–718. [PubMed] [Google Scholar]
  4. Clappison B. H., Anderson W. P., Johnston C. I. Renal hemodynamics and renal kinins after angiotensin-converting enzyme inhibition. Kidney Int. 1981 Nov;20(5):615–620. doi: 10.1038/ki.1981.184. [DOI] [PubMed] [Google Scholar]
  5. Douglas J. G. Angiotensin receptor subtypes of the kidney cortex. Am J Physiol. 1987 Jul;253(1 Pt 2):F1–F7. doi: 10.1152/ajprenal.1987.253.1.F1. [DOI] [PubMed] [Google Scholar]
  6. Dunn M. J., Scharschmidt L. A. Prostaglandins modulate the glomerular actions of angiotensin II. Kidney Int Suppl. 1987 May;20:S95–101. [PubMed] [Google Scholar]
  7. Dávalos M., Frega N. S., Saker B., Leaf A. Effect of exogenous and endogenous angiotensin II in the isolated perfused rat kidney. Am J Physiol. 1978 Dec;235(6):F605–F610. doi: 10.1152/ajprenal.1978.235.6.F605. [DOI] [PubMed] [Google Scholar]
  8. Edwards R. M. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. Am J Physiol. 1983 May;244(5):F526–F534. doi: 10.1152/ajprenal.1983.244.5.F526. [DOI] [PubMed] [Google Scholar]
  9. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  10. Foidart J., Sraer J., Delarue F., Mahieu P., Ardaillou R. Evidence for mesangial glomerular receptors for angiotensin II linked to mesangial cell contractility. FEBS Lett. 1980 Dec 1;121(2):333–339. doi: 10.1016/0014-5793(80)80375-9. [DOI] [PubMed] [Google Scholar]
  11. Hall J. E. Regulation of glomerular filtration rate and sodium excretion by angiotensin II. Fed Proc. 1986 Apr;45(5):1431–1437. [PubMed] [Google Scholar]
  12. Harris P. J., Cullinan M., Thomas D., Morgan T. O. Digital image capture and analysis for split-drop micropuncture. Pflugers Arch. 1987 May;408(6):615–618. doi: 10.1007/BF00581164. [DOI] [PubMed] [Google Scholar]
  13. Harris P. J., Navar L. G., Ploth D. W. Evidence for angiotensin-stimulated proximal tubular fluid reabsorption in normotensive and hypertensive rats: effect of acute administration of captopril. Clin Sci (Lond) 1984 May;66(5):541–544. doi: 10.1042/cs0660541. [DOI] [PubMed] [Google Scholar]
  14. Harris P. J., Young J. A. Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch. 1977 Jan 17;367(3):295–297. doi: 10.1007/BF00581370. [DOI] [PubMed] [Google Scholar]
  15. Harris P. J., Zhuo J. L., Skinner S. L. Effects of angiotensins II and III on glomerulotubular balance in rats. Clin Exp Pharmacol Physiol. 1987 Jun;14(6):489–502. doi: 10.1111/j.1440-1681.1987.tb01505.x. [DOI] [PubMed] [Google Scholar]
  16. Heller J., Horácek V. Angiotensin II: preferential efferent constriction? Ren Physiol. 1986;9(6):357–365. doi: 10.1159/000173101. [DOI] [PubMed] [Google Scholar]
  17. Kirchner K. A. Lithium as a marker for proximal tubular delivery during low salt intake and diuretic infusion. Am J Physiol. 1987 Jul;253(1 Pt 2):F188–F196. doi: 10.1152/ajprenal.1987.253.1.F188. [DOI] [PubMed] [Google Scholar]
  18. Koomans H. A., Boer W. H., Dorhout Mees E. J. Evaluation of lithium clearance as a marker of proximal tubule sodium handling. Kidney Int. 1989 Jul;36(1):2–12. doi: 10.1038/ki.1989.153. [DOI] [PubMed] [Google Scholar]
  19. Kurtz A., Penner R. Angiotensin II induces oscillations of intracellular calcium and blocks anomalous inward rectifying potassium current in mouse renal juxtaglomerular cells. Proc Natl Acad Sci U S A. 1989 May;86(9):3423–3427. doi: 10.1073/pnas.86.9.3423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu F. Y., Cogan M. G. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J Clin Invest. 1987 Jul;80(1):272–275. doi: 10.1172/JCI113059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mendelsohn F. A., Dunbar M., Allen A., Chou S. T., Millan M. A., Aguilera G., Catt K. J. Angiotensin II receptors in the kidney. Fed Proc. 1986 Apr;45(5):1420–1425. [PubMed] [Google Scholar]
  22. Myers B. D., Deen W. M., Brenner B. M. Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ Res. 1975 Jul;37(1):101–110. doi: 10.1161/01.res.37.1.101. [DOI] [PubMed] [Google Scholar]
  23. Navar L. G., Jirakulsomchok D., Bell P. D., Thomas C. E., Huang W. C. Influence of converting enzyme inhibition on renal hemodynamics and glomerular dynamics in sodium-restricted dogs. Hypertension. 1982 Jan-Feb;4(1):58–68. doi: 10.1161/01.hyp.4.1.58. [DOI] [PubMed] [Google Scholar]
  24. Navar L. G., Rosivall L., Carmines P. K., Oparil S. Effects of locally formed angiotensin II on renal hemodynamics. Fed Proc. 1986 Apr;45(5):1448–1453. [PubMed] [Google Scholar]
  25. Ondetti M. A., Cushman D. W. Enzymes of the renin-angiotensin system and their inhibitors. Annu Rev Biochem. 1982;51:283–308. doi: 10.1146/annurev.bi.51.070182.001435. [DOI] [PubMed] [Google Scholar]
  26. Osborne M. J., Droz B., Meyer P., Morel F. Angiotensin II: renal localization in glomerular mesangial cells by autoradiography. Kidney Int. 1975 Oct;8(4):245–254. doi: 10.1038/ki.1975.108. [DOI] [PubMed] [Google Scholar]
  27. Pfeilschifter J., Bauer C. Pertussis toxin abolishes angiotensin II-induced phosphoinositide hydrolysis and prostaglandin synthesis in rat renal mesangial cells. Biochem J. 1986 May 15;236(1):289–294. doi: 10.1042/bj2360289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schor N., Ichikawa I., Brenner B. M. Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat. Kidney Int. 1981 Oct;20(4):442–451. doi: 10.1038/ki.1981.160. [DOI] [PubMed] [Google Scholar]
  29. Schuster V. L., Kokko J. P., Jacobson H. R. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984 Feb;73(2):507–515. doi: 10.1172/JCI111237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Steiner R. W., Blantz R. C. Acute reversal by saralasin of multiple intrarenal effects of angiotensin II. Am J Physiol. 1979 Nov;237(5):F386–F391. doi: 10.1152/ajprenal.1979.237.5.F386. [DOI] [PubMed] [Google Scholar]
  32. Thomsen K., Leyssac P. P. Effect of dietary sodium content on renal handling of lithium. Experiments in conscious diabetes insipidus rats. Pflugers Arch. 1986 Jul;407(1):55–58. doi: 10.1007/BF00580720. [DOI] [PubMed] [Google Scholar]
  33. Thomsen K. Lithium clearance: a new method for determining proximal and distal tubular reabsorption of sodium and water. Nephron. 1984;37(4):217–223. doi: 10.1159/000183252. [DOI] [PubMed] [Google Scholar]
  34. Tucker B. J., Blantz R. C. Acute and subacute prostaglandin and ANG II inhibition on glomerulotubular dynamics in rats. Am J Physiol. 1990 Apr;258(4 Pt 2):F1026–F1035. doi: 10.1152/ajprenal.1990.258.4.F1026. [DOI] [PubMed] [Google Scholar]
  35. Wong P. C., Price W. A., Jr, Chiu A. T., Carini D. J., Duncia J. V., Johnson A. L., Wexler R. R., Timmermans P. B. Nonpeptide angiotensin II receptor antagonists. Studies with EXP9270 and DuP 753. Hypertension. 1990 Jun;15(6 Pt 2):823–834. doi: 10.1161/01.hyp.15.6.823. [DOI] [PubMed] [Google Scholar]
  36. Wong P. C., Price W. A., Jr, Chiu A. T., Duncia J. V., Carini D. J., Wexler R. R., Johnson A. L., Timmermans P. B. Hypotensive action of DuP 753, an angiotensin II antagonist, in spontaneously hypertensive rats. Nonpeptide angiotensin II receptor antagonists: X. Hypertension. 1990 May;15(5):459–468. doi: 10.1161/01.hyp.15.5.459. [DOI] [PubMed] [Google Scholar]
  37. Xie M. H., Liu F. Y., Wong P. C., Timmermans P. B., Cogan M. G. Proximal nephron and renal effects of DuP 753, a nonpeptide angiotensin II receptor antagonist. Kidney Int. 1990 Sep;38(3):473–479. doi: 10.1038/ki.1990.228. [DOI] [PubMed] [Google Scholar]
  38. Zhuo J. L., Harris P. J., Skinner S. L. Atrial natriuretic factor modulates proximal glomerulotubular balance in anesthetized rats. Hypertension. 1989 Dec;14(6):666–673. doi: 10.1161/01.hyp.14.6.666. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES