Abstract
1. A preparation was developed to record single-fibre chemoreceptor afferent activity from carotid bodies of newborn and adult rats in vitro. The response to severe hypoxia was studied as a function of developmental age in four age groups: 1-2, 4-7, 10-15 days and adult (25-30 days). 2. During superfusion with HEPES-saline at room PO2 and at 26 or 35 degrees C, afferent chemoreceptor activity could be recorded in all age groups. No significant difference was found among groups in baseline discharge frequency at 26 or 35 degrees C. 3. All chemoreceptors responded to anoxia (PO2 congruent to 0 Torr) with a rapid increase in discharge frequency. At 35 degrees C, peak discharge frequency of single chemoreceptor afferents was significantly greater in the adult (15.7 +/- 1.6 Hz, mean +/- S.E.M., n = 18) and 10-15 days (11.2 +/- 4.2, n = 8) compared to rats of 1-2 days (4.3 +/- 0.7, n = 14) and 4-7 days of age (3.9 +/- 1.0, n = 7). 4. At 2 min into the anoxia period, all chemoreceptor activities were reduced from their peak discharge levels. At 35 degrees C, this decrease was significantly greater in the adult compared to the newborn. 5. During the period of decreased activity during anoxia, the chemoreceptor discharge could not be increased by inter-stream injection of acetylcholine (100 micrograms) or dopamine (100 micrograms), although these drugs were effective in increasing discharge rate prior to hypoxia. 6. We conclude that: (1) postnatal maturation of chemoreceptor sensitivity to hypoxia is present in vitro, (2) maturation occurs between the first and second week after birth in the rat, and (3) the decrease in activity during prolonged anoxia is not greater in the newborn compared to the adult. Thus, maturational changes occur in the sensitivity of the glomus cell-nerve ending complex to hypoxia.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acker H., Lübbers D. W., Purves M. J., Tan E. D. Measurements of the partial pressure of oxygen in the carotid body of fetal sheep and newborn lambs. J Dev Physiol. 1980 Oct;2(5):323–328. [PubMed] [Google Scholar]
- Biscoe T. J., Duchen M. R. Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide. J Physiol. 1989 Jun;413:447–468. doi: 10.1113/jphysiol.1989.sp017663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco C. E., Dawes G. S., Hanson M. A., McCooke H. B. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J Physiol. 1984 Jun;351:25–37. doi: 10.1113/jphysiol.1984.sp015229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonora M., Marlot D., Gautier H., Duron B. Effects of hypoxia on ventilation during postnatal development in conscious kittens. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jun;56(6):1464–1471. doi: 10.1152/jappl.1984.56.6.1464. [DOI] [PubMed] [Google Scholar]
- Bureau M. A., Zinman R., Foulon P., Begin R. Diphasic ventilatory response to hypoxia in newborn lambs. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jan;56(1):84–90. doi: 10.1152/jappl.1984.56.1.84. [DOI] [PubMed] [Google Scholar]
- Cardenas H., Zapata P. Dopamine-induced ventilatory depression in the rat, mediated by carotid nerve afferents. Neurosci Lett. 1981 Jun 12;24(1):29–33. doi: 10.1016/0304-3940(81)90354-2. [DOI] [PubMed] [Google Scholar]
- Dawes G. S. The central control of fetal breathing and skeletal muscle movements. J Physiol. 1984 Jan;346:1–18. doi: 10.1113/jphysiol.1984.sp015003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delpiano M. A., Hescheler J. Evidence for a PO2-sensitive K+ channel in the type-I cell of the rabbit carotid body. FEBS Lett. 1989 Jun 5;249(2):195–198. doi: 10.1016/0014-5793(89)80623-4. [DOI] [PubMed] [Google Scholar]
- Donnelly D. F., Smith E. J., Dutton R. E. Neural response of carotid chemoreceptors following dopamine blockade. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):172–177. doi: 10.1152/jappl.1981.50.1.172. [DOI] [PubMed] [Google Scholar]
- Duchen M. R., Caddy K. W., Kirby G. C., Patterson D. L., Ponte J., Biscoe T. J. Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience. 1988 Jul;26(1):291–311. doi: 10.1016/0306-4522(88)90146-7. [DOI] [PubMed] [Google Scholar]
- Eden G. J., Hanson M. A. Effects of chronic hypoxia from birth on the ventilatory response to acute hypoxia in the newborn rat. J Physiol. 1987 Nov;392:11–19. doi: 10.1113/jphysiol.1987.sp016766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eden G. J., Hanson M. A. Maturation of the respiratory response to acute hypoxia in the newborn rat. J Physiol. 1987 Nov;392:1–9. doi: 10.1113/jphysiol.1987.sp016765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eyzaguirre C., Koyano H. Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J Physiol. 1965 Jun;178(3):385–409. doi: 10.1113/jphysiol.1965.sp007634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddad G. G., Donnelly D. F. O2 deprivation induces a major depolarization in brain stem neurons in the adult but not in the neonatal rat. J Physiol. 1990 Oct;429:411–428. doi: 10.1113/jphysiol.1990.sp018265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddad G. G., Gandhi M. R., Mellins R. B. Maturation of ventilatory response to hypoxia in puppies during sleep. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):309–314. doi: 10.1152/jappl.1982.52.2.309. [DOI] [PubMed] [Google Scholar]
- Hertzberg T., Hellström S., Lagercrantz H., Pequignot J. M. Development of the arterial chemoreflex and turnover of carotid body catecholamines in the newborn rat. J Physiol. 1990 Jun;425:211–225. doi: 10.1113/jphysiol.1990.sp018099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hervonen A., Kanerva L., Korkala O., Partanen S. Effects of hypoxia and glucocorticoids on the histochemically demonstrable catecholamines of the newborn rat carotid body. Acta Physiol Scand. 1972 Sep;86(1):109–114. doi: 10.1111/j.1748-1716.1972.tb00228.x. [DOI] [PubMed] [Google Scholar]
- Jansen A. H., Purves M. J., Tan E. D. The role of sympathetic nerves in the activation of the carotid body chemoreceptors at birth in the sheep. J Dev Physiol. 1980 Oct;2(5):305–321. [PubMed] [Google Scholar]
- Kumar P., Hanson M. A. Re-setting of the hypoxic sensitivity of aortic chemoreceptors in the new-born lamb. J Dev Physiol. 1989 Apr;11(4):199–206. [PubMed] [Google Scholar]
- Lawson E. E., Long W. A. Central neural respiratory response to carotid sinus nerve stimulation in newborns. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jun;56(6):1614–1620. doi: 10.1152/jappl.1984.56.6.1614. [DOI] [PubMed] [Google Scholar]
- Leblond J., Krnjevic K. Hypoxic changes in hippocampal neurons. J Neurophysiol. 1989 Jul;62(1):1–14. doi: 10.1152/jn.1989.62.1.1. [DOI] [PubMed] [Google Scholar]
- Mayock D. E., Standaert T. A., Guthrie R. D., Woodrum D. E. Dopamine and carotid body function in the newborn lamb. J Appl Physiol Respir Environ Exerc Physiol. 1983 Mar;54(3):814–820. doi: 10.1152/jappl.1983.54.3.814. [DOI] [PubMed] [Google Scholar]
- Peers C. Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)-activated K+ current. Neurosci Lett. 1990 Nov 13;119(2):253–256. doi: 10.1016/0304-3940(90)90846-2. [DOI] [PubMed] [Google Scholar]
- Peers C., O'Donnell J. Potassium currents recorded in type I carotid body cells from the neonatal rat and their modulation by chemoexcitatory agents. Brain Res. 1990 Jul 9;522(2):259–266. doi: 10.1016/0006-8993(90)91470-2. [DOI] [PubMed] [Google Scholar]
- Stys P. K., Ransom B. R., Waxman S. G., Davis P. K. Role of extracellular calcium in anoxic injury of mammalian central white matter. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4212–4216. doi: 10.1073/pnas.87.11.4212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zapata P. Effects of dopamine on carotid chemo- and baroreceptors in vitro. J Physiol. 1975 Jan;244(1):235–251. doi: 10.1113/jphysiol.1975.sp010794. [DOI] [PMC free article] [PubMed] [Google Scholar]