Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Oct;456:591–608. doi: 10.1113/jphysiol.1992.sp019355

Effect of colcemid on the water permeability response to vasopressin in isolated perfused rabbit collecting tubules.

M E Phillips 1, A Taylor 1
PMCID: PMC1175700  PMID: 1338105

Abstract

1. The effect of the microtubule-disruptive agent, colcemid (N-deacetyl-N-methyl-colchicine), on the water permeability response to vasopressin has been investigated in isolated cortical collecting tubules from the rabbit kidney perfused in vitro. 2. Pretreatment of collecting tubules with colcemid inhibited the increase in water permeability elicited by vasopressin, 50 microU ml-1, in a time- and dose-dependent manner. After 75 min exposure to the drug, inhibition of the response to the hormone averaged 72 +/- 6% (n = 4, P < 0.01) at a colcemid concentration of 7.2 x 10(-5) M. Inhibition was estimated to be half-maximal at a colcemid concentration of 1.9 x 10(-6) M. 3. Colcemid, 2.7 x 10(-7) to 7.2 x 10(-5) M, had no effect on basal water permeability nor on the increase in lumen negative potential difference (PD) induced by the hormone. 4. Lumicolcemid, an isomer of colcemid that does not disrupt microtubules, had no influence on the water permeability response to vasopressin. 5. Pretreatment with colcemid, 2.7 x 10(-5) M, for 45 min inhibited the water permeability response to 8-CPT-cAMP, 1.8 x 10(-5) M, by 38 +/- 4% (n = 5, P < 0.01). 6. When collecting tubules were exposed to colcemid, 5.5 x 10(-5) M, for 45 min after the hydrosmotic response to vasopressin had been established, the drug had no influence on the maintenance of the raised water permeability. 7. The results provide further evidence that cytoplasmic microtubules play a role in the initiation of the hydrosmotic response to vasopressin in the mammalian collecting tubule at a site distal to the generation of cyclic AMP.

Full text

PDF
593

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson J., Inoué S. Reversal by light of the action of N-methyl N-desacetyl colchicine on mitosis. J Cell Biol. 1970 May;45(2):470–477. doi: 10.1083/jcb.45.2.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee A. C., Bhattacharyya B. Colcemid and colchicine binding to tubulin. Similarity and dissimilarity. FEBS Lett. 1979 Mar 15;99(2):333–336. doi: 10.1016/0014-5793(79)80985-0. [DOI] [PubMed] [Google Scholar]
  3. Barnes L. D., Roberson G. M. Tubulin and microtubules from bovine kidney: purification, properties, and characterization of ligand binding. Arch Biochem Biophys. 1979 Sep;196(2):511–524. doi: 10.1016/0003-9861(79)90303-5. [DOI] [PubMed] [Google Scholar]
  4. Bourguet J., Chevalier J., Parisi M., Gobin R. Rôle des agrégats de particules intramembranaires induits par l'hormone antidiurétique. J Physiol (Paris) 1981;77(4-5):629–641. [PubMed] [Google Scholar]
  5. Brown D. Membrane recycling and epithelial cell function. Am J Physiol. 1989 Jan;256(1 Pt 2):F1–12. doi: 10.1152/ajprenal.1989.256.1.F1. [DOI] [PubMed] [Google Scholar]
  6. Coleman R. A., Harris H. W., Jr, Wade J. B. Visualization of endocytosed markers in freeze-fracture studies of toad urinary bladder. J Histochem Cytochem. 1987 Dec;35(12):1405–1414. doi: 10.1177/35.12.3119700. [DOI] [PubMed] [Google Scholar]
  7. Dousa T. P., Barnes L. D. Effects of colchicine and vinblastine on the cellular action of vasopressin in mammalian kidney. A possible role of microtubules. J Clin Invest. 1974 Aug;54(2):252–262. doi: 10.1172/JCI107760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Du Bois R., Vernoiry A., Abramow M. Computation of the osmotic water permeability of perfused tubule segments. Kidney Int. 1976 Dec;10(6):478–479. doi: 10.1038/ki.1976.135. [DOI] [PubMed] [Google Scholar]
  9. Frindt G., Burg M. B. Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int. 1972 Apr;1(4):224–231. doi: 10.1038/ki.1972.32. [DOI] [PubMed] [Google Scholar]
  10. Frindt G., Windhager E. E., Taylor A. Hydroosmotic response of collecting tubules to ADH or cAMP at reduced peritubular sodium. Am J Physiol. 1982 Nov;243(5):F503–F513. doi: 10.1152/ajprenal.1982.243.5.F503. [DOI] [PubMed] [Google Scholar]
  11. Grantham J. J., Burg M. B. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966 Jul;211(1):255–259. doi: 10.1152/ajplegacy.1966.211.1.255. [DOI] [PubMed] [Google Scholar]
  12. Harmanci M. C., Kachadorian W. A., Valtin H., DiScala V. A. Antidiuretic hormone-induced intramembranous alterations in mammalian collecting ducts. Am J Physiol. 1978 Nov;235(5):440–443. doi: 10.1152/ajprenal.1978.235.5.F440. [DOI] [PubMed] [Google Scholar]
  13. Harmanci M. C., Stern P., Kachadorian W. A., Valtin H., DiScala V. A. Vasopressin and collecting duct intramembranous particle clusters: a dose-response relationship. Am J Physiol. 1980 Dec;239(6):F560–F564. doi: 10.1152/ajprenal.1980.239.6.F560. [DOI] [PubMed] [Google Scholar]
  14. Iyengar R., Lepper K. G., Mailman D. S. Involvement of microtubules and microfilaments in the action of vasopressing in canine renal medulla. J Supramol Struct. 1976;5(4):521(373)–530(382). doi: 10.1002/jss.400050409. [DOI] [PubMed] [Google Scholar]
  15. Jones S. M., Frindt G., Windhager E. E. Effect of peritubular [Ca] or ionomycin on hydrosmotic response of CCTs to ADH or cAMP. Am J Physiol. 1988 Feb;254(2 Pt 2):F240–F253. doi: 10.1152/ajprenal.1988.254.2.F240. [DOI] [PubMed] [Google Scholar]
  16. Kachadorian W. A., Ellis S. J., Muller J. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am J Physiol. 1979 Jan;236(1):F14–F20. doi: 10.1152/ajprenal.1979.236.1.F14. [DOI] [PubMed] [Google Scholar]
  17. Kachadorian W. A., Wade J. B., DiScala V. A. Vasopressin: induced structural change in toad bladder luminal membrane. Science. 1975 Oct 3;190(4209):67–69. doi: 10.1126/science.809840. [DOI] [PubMed] [Google Scholar]
  18. Kawahara H., French S. W. Role of cytoskeleton in canalicular contraction in cultured differentiated hepatocytes. Am J Pathol. 1990 Mar;136(3):521–532. [PMC free article] [PubMed] [Google Scholar]
  19. Kubat B., Lorenzen M., Reale E. Vasopressin-induced intramembrane particle aggregates. A dose-response relationship in the isolated cortical collecting duct of the rabbit kidney. Biol Cell. 1989;66(1-2):59–63. [PubMed] [Google Scholar]
  20. Mizel S. B., Wilson L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry. 1972 Jul 4;11(14):2573–2578. doi: 10.1021/bi00764a003. [DOI] [PubMed] [Google Scholar]
  21. Muller J., Kachadorian W. A., DiScala V. A. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J Cell Biol. 1980 Apr;85(1):83–95. doi: 10.1083/jcb.85.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Osborn M., Weber K. Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane. Proc Natl Acad Sci U S A. 1976 Mar;73(3):867–871. doi: 10.1073/pnas.73.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palmer L. G., Lorenzen M. Antidiuretic hormone-dependent membrane capacitance and water permeability in the toad urinary bladder. Am J Physiol. 1983 Feb;244(2):F195–F204. doi: 10.1152/ajprenal.1983.244.2.F195. [DOI] [PubMed] [Google Scholar]
  24. Parisi M., Pisam M., Mérot J., Chevalier J., Bourguet J. The role of microtubules and microfilaments in the hydrosmotic response to antidiuretic hormone. Biochim Biophys Acta. 1985 Jul 25;817(2):333–342. doi: 10.1016/0005-2736(85)90036-7. [DOI] [PubMed] [Google Scholar]
  25. Pearl M., Taylor A. Role of the cytoskeleton in the control of transcellular water flow by vasopressin in amphibian urinary bladder. Biol Cell. 1985;55(3):163–172. doi: 10.1111/j.1768-322x.1985.tb00421.x. [DOI] [PubMed] [Google Scholar]
  26. Phillips M. E., Taylor A. Effect of nocodazole on the water permeability response to vasopressin in rabbit collecting tubules perfused in vitro. J Physiol. 1989 Apr;411:529–544. doi: 10.1113/jphysiol.1989.sp017588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ray K., Bhattacharyya B., Biswas B. B. Role of B-ring of colchicine in its binding to tubulin. J Biol Chem. 1981 Jun 25;256(12):6241–6244. [PubMed] [Google Scholar]
  28. Reaven E., Maffly R., Taylor A. Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. III. Morphological studies on the content and distribution of microtubules in bladder epithelial cells. J Membr Biol. 1978 May 3;40(3):251–267. doi: 10.1007/BF02002971. [DOI] [PubMed] [Google Scholar]
  29. Schroer T. A., Sheetz M. P. Functions of microtubule-based motors. Annu Rev Physiol. 1991;53:629–652. doi: 10.1146/annurev.ph.53.030191.003213. [DOI] [PubMed] [Google Scholar]
  30. Spiegelman B. M., Lopata M. A., Kirschner M. W. Multiple sites for the initiation of microtubule assembly in mammalian cells. Cell. 1979 Feb;16(2):239–252. doi: 10.1016/0092-8674(79)90002-3. [DOI] [PubMed] [Google Scholar]
  31. Strange K., Willingham M. C., Handler J. S., Harris H. W., Jr Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J Membr Biol. 1988 Jul;103(1):17–28. doi: 10.1007/BF01871929. [DOI] [PubMed] [Google Scholar]
  32. Taylor A., Mamelak M., Golbetz H., Maffly R. Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. I. Functional studies on the effects of antimitotic agents on the response to vasopressin. J Membr Biol. 1978 May 3;40(3):213–235. doi: 10.1007/BF02002969. [DOI] [PubMed] [Google Scholar]
  33. Verkman A. S., Lencer W. I., Brown D., Ausiello D. A. Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature. 1988 May 19;333(6170):268–269. doi: 10.1038/333268a0. [DOI] [PubMed] [Google Scholar]
  34. Wade J. B. Dynamics of apical membrane responses to ADH in amphibian bladder. Am J Physiol. 1989 Nov;257(5 Pt 2):R998–1003. doi: 10.1152/ajpregu.1989.257.5.R998. [DOI] [PubMed] [Google Scholar]
  35. Wilson L., Bamburg J. R., Mizel S. B., Grisham L. M., Creswell K. M. Interaction of drugs with microtubule proteins. Fed Proc. 1974 Feb;33(2):158–166. [PubMed] [Google Scholar]
  36. Wilson L., Friedkin M. The biochemical events of mitosis. II. The in vivo and in vitro binding of colchicine in grasshopper embryos and its possible relation to inhibition of mitosis. Biochemistry. 1967 Oct;6(10):3126–3135. doi: 10.1021/bi00862a021. [DOI] [PubMed] [Google Scholar]
  37. Wilson L., Taylor A. Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. II. Colchicine binding properties of toad bladder epithelial cell tubulin. J Membr Biol. 1978 May 3;40(3):237–250. doi: 10.1007/BF02002970. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES