Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Nov;457:611–626. doi: 10.1113/jphysiol.1992.sp019397

Control of an external force in leg extensions in humans.

R Jacobs 1, G J van Ingen Schenau 1
PMCID: PMC1175750  PMID: 1297846

Abstract

1. We investigated the hypothesis that mono- and bi-articular muscles perform different functions: the former are chiefly dependent on their mechanical advantage, while the latter are considered to be mainly concerned with controlling the direction of an external force. 2. Seven subjects were asked to exert a constant external force in various directions from three different positions. Feedback was given on the amplitude (300 and 600 N) and direction of the force vector. 3. During each trial the position of the subject was registered. Ground reaction force and muscle activity (EMG) from the main mono- and bi-articular upper leg muscles were recorded. Link segment modelling was used to obtain net moments about the knee and hip joints. For each muscle the mechanical advantage was calculated in each force direction. 4. The task of controlling the ground reaction force was performed with little interindividual variation as reflected by the variability of the different force and EMG variables. 5. A linear relationship between the difference in activity of rectus femoris and hamstrings and the difference in net moment around the knee and hip was found. This relationship showed very high correlation coefficients of 0.96 (300 N) and 0.97 (600 N) and was independent of position. Mean correlations between this activity difference and the angle of the force vector were also high: -0.95 (300 N) and -0.94 (600 N). 6. The mono- as well as the bi-articular muscles increased in activity when a larger mechanical advantage could be obtained from them, except for the biceps femoris (short head). 7. The results support the hypothesis that bi-articular muscles have a unique role in controlling the distribution of net moments about the joints, and as a consequence, in controlling the direction of the external force exerted on the environment.

Full text

PDF
615

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. G. A general method for determining the functional role of a muscle. J Biomech Eng. 1985 Nov;107(4):348–353. doi: 10.1115/1.3138568. [DOI] [PubMed] [Google Scholar]
  2. Baratta R., Solomonow M., Zhou B. H., Letson D., Chuinard R., D'Ambrosia R. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med. 1988 Mar-Apr;16(2):113–122. doi: 10.1177/036354658801600205. [DOI] [PubMed] [Google Scholar]
  3. Bobbert M. F., van Ingen Schenau G. J. Coordination in vertical jumping. J Biomech. 1988;21(3):249–262. doi: 10.1016/0021-9290(88)90175-3. [DOI] [PubMed] [Google Scholar]
  4. Buchanan T. S., Rovai G. P., Rymer W. Z. Strategies for muscle activation during isometric torque generation at the human elbow. J Neurophysiol. 1989 Dec;62(6):1201–1212. doi: 10.1152/jn.1989.62.6.1201. [DOI] [PubMed] [Google Scholar]
  5. Burke D., Dickson H. G., Skuse N. F. Task-dependent changes in the responses to low-threshold cutaneous afferent volleys in the human lower limb. J Physiol. 1991 Jan;432:445–458. doi: 10.1113/jphysiol.1991.sp018393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feldman A. G. Once more on the equilibrium-point hypothesis (lambda model) for motor control. J Mot Behav. 1986 Mar;18(1):17–54. doi: 10.1080/00222895.1986.10735369. [DOI] [PubMed] [Google Scholar]
  7. Flanders M., Soechting J. F. Arm muscle activation for static forces in three-dimensional space. J Neurophysiol. 1990 Dec;64(6):1818–1837. doi: 10.1152/jn.1990.64.6.1818. [DOI] [PubMed] [Google Scholar]
  8. Georgopoulos A. P., Schwartz A. B., Kettner R. E. Neuronal population coding of movement direction. Science. 1986 Sep 26;233(4771):1416–1419. doi: 10.1126/science.3749885. [DOI] [PubMed] [Google Scholar]
  9. Gregoire L., Veeger H. E., Huijing P. A., van Ingen Schenau G. J. Role of mono- and biarticular muscles in explosive movements. Int J Sports Med. 1984 Dec;5(6):301–305. doi: 10.1055/s-2008-1025921. [DOI] [PubMed] [Google Scholar]
  10. Hasan Z., Karst G. M. Muscle activity for initiation of planar, two-joint arm movements in different directions. Exp Brain Res. 1989;76(3):651–655. doi: 10.1007/BF00248921. [DOI] [PubMed] [Google Scholar]
  11. Hawkins D., Hull M. L. A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech. 1990;23(5):487–494. doi: 10.1016/0021-9290(90)90304-l. [DOI] [PubMed] [Google Scholar]
  12. Hoffer J. A., Loeb G. E., Sugano N., Marks W. B., O'Donovan M. J., Pratt C. A. Cat hindlimb motoneurons during locomotion. III. Functional segregation in sartorius. J Neurophysiol. 1987 Feb;57(2):554–562. doi: 10.1152/jn.1987.57.2.554. [DOI] [PubMed] [Google Scholar]
  13. Hogan N., Bizzi E., Mussa-Ivaldi F. A., Flash T. Controlling multijoint motor behavior. Exerc Sport Sci Rev. 1987;15:153–190. [PubMed] [Google Scholar]
  14. Jacobs R., van Ingen Schenau G. J. Intermuscular coordination in a sprint push-off. J Biomech. 1992 Sep;25(9):953–965. doi: 10.1016/0021-9290(92)90031-u. [DOI] [PubMed] [Google Scholar]
  15. Kalaska J. F., Cohen D. A., Hyde M. L., Prud'homme M. A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci. 1989 Jun;9(6):2080–2102. doi: 10.1523/JNEUROSCI.09-06-02080.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lacquaniti F., Soechting J. F. EMG responses to load perturbations of the upper limb: effect of dynamic coupling between shoulder and elbow motion. Exp Brain Res. 1986;61(3):482–496. doi: 10.1007/BF00237573. [DOI] [PubMed] [Google Scholar]
  17. Loeb G. E. The control and responses of mammalian muscle spindles during normally executed motor tasks. Exerc Sport Sci Rev. 1984;12:157–204. [PubMed] [Google Scholar]
  18. Nardone A., Romanò C., Schieppati M. Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol. 1989 Feb;409:451–471. doi: 10.1113/jphysiol.1989.sp017507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nilsson J., Thorstensson A., Halbertsma J. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiol Scand. 1985 Apr;123(4):457–475. doi: 10.1111/j.1748-1716.1985.tb07612.x. [DOI] [PubMed] [Google Scholar]
  20. Németh G., Ohlsén H. In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. J Biomech. 1985;18(2):129–140. doi: 10.1016/0021-9290(85)90005-3. [DOI] [PubMed] [Google Scholar]
  21. Perret C., Cabelguen J. M. Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res. 1980 Apr 14;187(2):333–352. doi: 10.1016/0006-8993(80)90207-3. [DOI] [PubMed] [Google Scholar]
  22. Suzuki S., Watanabe S., Homma S. EMG activity and kinematics of human cycling movements at different constant velocities. Brain Res. 1982 May 27;240(2):245–258. doi: 10.1016/0006-8993(82)90220-7. [DOI] [PubMed] [Google Scholar]
  23. Visser J. J., Hoogkamer J. E., Bobbert M. F., Huijing P. A. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61(5-6):453–460. doi: 10.1007/BF00236067. [DOI] [PubMed] [Google Scholar]
  24. de Koning J. J., de Groot G., van Ingen Schenau G. J. Coordination of leg muscles during speed skating. J Biomech. 1991;24(2):137–146. doi: 10.1016/0021-9290(91)90358-t. [DOI] [PubMed] [Google Scholar]
  25. van Ingen Schenau G. J., Boots P. J., de Groot G., Snackers R. J., van Woensel W. W. The constrained control of force and position in multi-joint movements. Neuroscience. 1992;46(1):197–207. doi: 10.1016/0306-4522(92)90019-x. [DOI] [PubMed] [Google Scholar]
  26. van Zuylen E. J., Gielen C. C., Denier van der Gon J. J. Coordination and inhomogeneous activation of human arm muscles during isometric torques. J Neurophysiol. 1988 Nov;60(5):1523–1548. doi: 10.1152/jn.1988.60.5.1523. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES