Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Mar;448:99–119. doi: 10.1113/jphysiol.1992.sp019031

Actions of perchlorate ions on rat soleus muscle fibres.

A F Dulhunty 1, P H Zhu 1, M F Patterson 1, G Ahern 1
PMCID: PMC1176189  PMID: 1317445

Abstract

1. The effects of perchlorate (ClO4-) on contraction have been studied in rat soleus muscle fibres using (i) potassium (K+) contracture and (ii) two-microelectrode-point voltage clamp techniques. 2. Membrane potentials (Vm) at all external [K+] were 3-5 mV more negative in ClO4-. The hyperpolarization could not be attributed to a change in Na+, K+, or Cl- permeability, or to an effect on the Na(+)-K+ pump. 3. ClO4- shifts the voltage dependence of tension activation, and contraction threshold, to more negative membrane potentials without altering maximum tension. Consequently, twitches and submaximal K+ contractures were potentiated, whereas tetanic contractions and 200 mM-K+ contractures were unaltered. 4. The decay of K+ contractures during steady depolarization with ClO4- developed a slow exponential phase with an average time constant of 6.05 +/- 0.76 min at -38 mV, and 1.68 +/- 0.15 min at -19 mV. This slow component was (a) under the rapid control of the surface Vm and (b) did not depend on external Ca2+. 5. Inactivation of E-C coupling was measured with a test 200 mM-K+ depolarization following 3-10 min depolarizations in conditioning solutions containing 20-120 mM-K+. ClO4- induced a negative shift in the curve-relating test K+ contracture amplitude to conditioning Vm but did not alter the rate of repriming of tension upon repolarization. 6. The results suggest that ClO4- increases the amount of activator produced during depolarization and thus allows the slow inactivation step in excitation-contraction (E-C) coupling to be reflected in the decay of K+ contracture tension. 7. A 'perchlorate contracture', which did not depend on the activation of E-C coupling, was observed. The contracture depended on external Ca2+, but not on voltage-dependent Ca2+ channels or Na(+)-Ca2+ exchange.

Full text

PDF
100

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Chandler W. K., Hodgkin A. L. The kinetics of mechanical activation in frog muscle. J Physiol. 1969 Sep;204(1):207–230. doi: 10.1113/jphysiol.1969.sp008909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  3. Berwe D., Gottschalk G., Lüttgau H. C. Effects of the calcium antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscle fibres of the frog. J Physiol. 1987 Apr;385:693–707. doi: 10.1113/jphysiol.1987.sp016515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blaustein M. P., Hodgkin A. L. The effect of cyanide on the efflux of calcium from squid axons. J Physiol. 1969 Feb;200(2):497–527. doi: 10.1113/jphysiol.1969.sp008704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caputo C., Bolaños P. Ultraslow contractile inactivation in frog skeletal muscle fibers. J Gen Physiol. 1990 Jul;96(1):47–56. doi: 10.1085/jgp.96.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chua M., Dulhunty A. F. Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles. J Gen Physiol. 1988 May;91(5):737–757. doi: 10.1085/jgp.91.5.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Costantin L. L. Contractile activation in frog skeletal muscle. J Gen Physiol. 1974 Jun;63(6):657–674. doi: 10.1085/jgp.63.6.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coulombe A., Lefèvre I. A., Baro I., Coraboeuf E. Barium- and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. J Membr Biol. 1989 Oct;111(1):57–67. doi: 10.1007/BF01869209. [DOI] [PubMed] [Google Scholar]
  10. Csernoch L., Kovács L., Szücs G. Perchlorate and the relationship between charge movement and contractile activation in frog skeletal muscle fibres. J Physiol. 1987 Sep;390:213–227. doi: 10.1113/jphysiol.1987.sp016695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Curtis B. A. Na/Ca exchange and excitation--contraction coupling in frog fast fibres. J Muscle Res Cell Motil. 1988 Oct;9(5):415–427. doi: 10.1007/BF01774068. [DOI] [PubMed] [Google Scholar]
  12. Donaldson S. K., Goldberg N. D., Walseth T. F., Huetteman D. A. Voltage dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5749–5753. doi: 10.1073/pnas.85.15.5749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Donaldson S. K. Mammalian muscle fiber types: comparison of excitation-contraction coupling mechanisms. Acta Physiol Scand Suppl. 1986;556:157–166. [PubMed] [Google Scholar]
  14. Dulhunty A. F. Activation and inactivation of excitation-contraction coupling in rat soleus muscle. J Physiol. 1991 Aug;439:605–626. doi: 10.1113/jphysiol.1991.sp018684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dulhunty A. F. Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. J Membr Biol. 1979 Apr 9;45(3-4):293–310. doi: 10.1007/BF01869290. [DOI] [PubMed] [Google Scholar]
  16. Dulhunty A. F., Gage P. W. Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle. J Physiol. 1988 May;399:63–80. doi: 10.1113/jphysiol.1988.sp017068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dulhunty A. F., Gage P. W. Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles. J Physiol. 1985 Jan;358:75–89. doi: 10.1113/jphysiol.1985.sp015541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fill M., Best P. M. Effect of perchlorate on calcium release in skinned fibres stimulated by ionic substitution and caffeine. Pflugers Arch. 1990 Mar;415(6):688–692. doi: 10.1007/BF02584006. [DOI] [PubMed] [Google Scholar]
  19. Fong P. Y., Turner P. R., Denetclaw W. F., Steinhardt R. A. Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science. 1990 Nov 2;250(4981):673–676. doi: 10.1126/science.2173137. [DOI] [PubMed] [Google Scholar]
  20. Foulks J. G., Miller J. A., Perry F. A. Repolarization-induced reactivation of contracture tension in frog skeletal muscle. Can J Physiol Pharmacol. 1973 May;51(5):324–334. doi: 10.1139/y73-049. [DOI] [PubMed] [Google Scholar]
  21. Foulks J. G., Perry F. A. The effects of temperature, local anaesthetics, pH, divalent cations, and group-specific reagents on repriming and repolarization-induced contractures in frog skeletal muscle. Can J Physiol Pharmacol. 1979 Jun;57(6):619–630. doi: 10.1139/y79-095. [DOI] [PubMed] [Google Scholar]
  22. Gomolla M., Gottschalk G., Lüttgau H. C. Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres. J Physiol. 1983 Oct;343:197–214. doi: 10.1113/jphysiol.1983.sp014888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Huang C. L. The differential effects of twitch potentiators on charge movements in frog skeletal muscle. J Physiol. 1986 Nov;380:17–33. doi: 10.1113/jphysiol.1986.sp016269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lüttgau H. C., Gottschalk G., Kovács L., Fuxreiter M. How perchlorate improves excitation-contraction coupling in skeletal muscle fibers. Biophys J. 1983 Aug;43(2):247–249. doi: 10.1016/S0006-3495(83)84346-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McLaughlin S., Bruder A., Chen S., Moser C. Chaotropic anions and the surface potential of bilayer membranes. Biochim Biophys Acta. 1975 Jun 25;394(2):304–313. doi: 10.1016/0005-2736(75)90267-9. [DOI] [PubMed] [Google Scholar]
  27. Noireaud J., Leoty C. Effect of external sodium substitution on potassium contractures of mammalian muscles: possible involvement of sarcolemma-bound calcium and Na+-Ca2+ exchange. Q J Exp Physiol. 1988 Mar;73(2):233–236. doi: 10.1113/expphysiol.1988.sp003136. [DOI] [PubMed] [Google Scholar]
  28. Philipson K. D. Sodium-calcium exchange in plasma membrane vesicles. Annu Rev Physiol. 1985;47:561–571. doi: 10.1146/annurev.ph.47.030185.003021. [DOI] [PubMed] [Google Scholar]
  29. Rosenberg R. L., Hess P., Tsien R. W. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials. J Gen Physiol. 1988 Jul;92(1):27–54. doi: 10.1085/jgp.92.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruff R. L., Simoncini L., Stühmer W. Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle Nerve. 1988 May;11(5):502–510. doi: 10.1002/mus.880110514. [DOI] [PubMed] [Google Scholar]
  31. Siri L. N., Sánchez J. A., Stefani E. Effect of glycerol treatment on the calcium current of frog skeletal muscle. J Physiol. 1980 Aug;305:87–96. doi: 10.1113/jphysiol.1980.sp013351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vergara J., Tsien R. Y., Delay M. Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6352–6356. doi: 10.1073/pnas.82.18.6352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Volpe P., Salviati G., Di Virgilio F., Pozzan T. Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature. 1985 Jul 25;316(6026):347–349. doi: 10.1038/316347a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES