Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Feb;121(3):447–452. doi: 10.1042/bj1210447

Formation of malate from glyoxylate in animal tissues

Chi-Chin Liang 1, Lo-Chang Ou 1,*
PMCID: PMC1176592  PMID: 5119782

Abstract

1. Incubation of rat liver homogenate with [1-14C]glyoxylate, ATP and acetate shows a rapid sequential incorporation of radioactivity into malate, oxaloacetate and citrate. 2. In liver from normal rats the rate of the formation of each substance in question is higher than that in liver from thiamin-deficient rats. 3. The net accumulation of malate is greater with liver from thiamin-deficient rats. Its further metabolism is retarded, it is suggested, by inhibitors formed by a condensation of glyoxylate and oxaloacetate.

Full text

PDF
452

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAMMARATA P. S., COHEN P. P. The scope of the transamination reaction in animal tissues. J Biol Chem. 1950 Nov;187(1):439–452. [PubMed] [Google Scholar]
  2. Carpenter W. D., Beevers H. Distribution and Properties of Isocitritase in Plants. Plant Physiol. 1959 Jul;34(4):403–409. doi: 10.1104/pp.34.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEKKER E. E., MAITRA U. Conversion of gamma-hydroxyglutamate to glyoxylate and alanine; purification and properties of the enzyme system. J Biol Chem. 1962 Jul;237:2218–2227. [PubMed] [Google Scholar]
  4. HOCKADAY T. D., FREDERICK E. W., CLAYTON J. E., SMITH L. H., Jr STUDIES ON PRIMARY HYPEROXALURIA. II. URINARY OXALATE, GLYCOLATE, AND GLYOXYLATE MEASUREMENT BY ISOTOPE DILUTION METHODS. J Lab Clin Med. 1965 Apr;65:677–687. [PubMed] [Google Scholar]
  5. KALNITSKY G., TAPLEY D. F. A sensitive method for estimation of oxaloacetate. Biochem J. 1958 Sep;70(1):28–34. doi: 10.1042/bj0700028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KORNBERG H. L., BEEVERS H. A mechanism of conversion of fat to carbohydrate in castor beans. Nature. 1957 Jul 6;180(4575):35–36. doi: 10.1038/180035a0. [DOI] [PubMed] [Google Scholar]
  7. KORNBERG H. L., KREBS H. A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. 1957 May 18;179(4568):988–991. doi: 10.1038/179988a0. [DOI] [PubMed] [Google Scholar]
  8. KURATOMI K., FUKUNAGA K. THE METABOLISM OF GAMMA-HYDROXYGLUTAMATE IN RAT LIVER. I. ENZYMIC SYNTHESIS OF GAMMA-HYDROXY-ALPHA-KETOGLUTARATE FROM PYRUVATE AND GLYOXYLATE. Biochim Biophys Acta. 1963 Dec 13;78:617–628. doi: 10.1016/0006-3002(63)91027-8. [DOI] [PubMed] [Google Scholar]
  9. LIANG C. C. Studies on experimental thiamine deficiency. 2. Tissue breakdown and glyoxylic acid formation. Biochem J. 1962 Apr;83:101–106. doi: 10.1042/bj0830101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LIANG C. C. Studies on experimental thiamine deficiency. 3. Glyoxylic acid, citric acid and tissue metabolism. Biochem J. 1962 Oct;85:38–44. doi: 10.1042/bj0850038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LIANG C. C. Studies on experimental thiamine deficiency. Trends of keto acid formtion and detection of glyoxylic acid. Biochem J. 1962 Mar;82:429–434. doi: 10.1042/bj0820429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PAYES B., LATIES G. G. The inhibition of several tricarboxylic acid cycle enzymes by gamma-hydroxy- alpha-ketoglutarate. Biochem Biophys Res Commun. 1963 Mar 25;10:460–466. doi: 10.1016/0006-291x(63)90380-2. [DOI] [PubMed] [Google Scholar]
  13. RUFFO A., ADINOLFI A., BUDILLON G., CAPOBIANCO G. Control of the citric acid cycle by glyoxylate. 2. Mechanism of the inhibition of respiration in liver and kidney particles. Biochem J. 1962 Dec;85:593–600. doi: 10.1042/bj0850593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruffo A. Réactivité du glyoxylate et régulation du cycle citrique dans les tissus animaux. Bull Soc Chim Biol (Paris) 1967;49(5):461–476. [PubMed] [Google Scholar]
  15. SMITH R. A., GUNSALUS I. C. Isocitritase; enzyme properties and reaction equilibrium. J Biol Chem. 1957 Nov;229(1):305–319. [PubMed] [Google Scholar]
  16. Stewart P. R., Quayle J. R. The synergistic decarboxylation of glyoxylate and 2-oxoglutarate by an enzyme system from pig-liver mitochondria. Biochem J. 1967 Mar;102(3):885–897. doi: 10.1042/bj1020885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TRUMAN D. E., KORNER A. Incorporation of amino acids into the protein of isolated mitochondria. A search for optimum conditions and a relationship to oxidative phosphorylation. Biochem J. 1962 Jun;83:588–596. doi: 10.1042/bj0830588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. TSUIKI S., KIKUCHI G. Catabolism of glycine in Rhodopseudomonas spheroides. Biochim Biophys Acta. 1962 Nov 5;64:514–525. doi: 10.1016/0006-3002(62)90310-4. [DOI] [PubMed] [Google Scholar]
  19. Thompson J. S., Richardson K. E. Determination of pyruvate in enzyme-catalyzed reactions in the presence of glyoxylate. Anal Biochem. 1968 Aug;24(2):197–201. doi: 10.1016/0003-2697(68)90170-x. [DOI] [PubMed] [Google Scholar]
  20. UTTER M. F. Interrelationships of oxalacetic and l-malic acids in carbon dioxide fixation. J Biol Chem. 1951 Feb;188(2):847–863. [PubMed] [Google Scholar]
  21. van der HORST C. Occurrence of keto-acids in blood serum and urine of cattle in comparison with man, horse, sheep and dog. Nature. 1960 Jul 9;187:146–147. doi: 10.1038/187146b0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES