Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Mar;121(5):763–769. doi: 10.1042/bj1210763

Aspects of glycine and serine biosynthesis during growth of Pseudomonas AM1 on C1 compounds

W Harder 1,*, J R Quayle 1
PMCID: PMC1176664  PMID: 5113490

Abstract

1. Methanol or formate can replace serine or glycine as supplements for growth on succinate of the auxotrophic mutants 20S and 82G of Pseudomonas AM1, showing that the organism can synthesize glycine and serine in net fashion from C1 units. 2. Double mutants of Pseudomonas 20S and 82G have been prepared (20ST-1 and 82GT-1) that are unable to grow on succinate+1mm-glyoxylate, succinate+2mm-methanol or methanol alone. 3. Mutants 20ST-1 and 82GT-1 lacked serine–glyoxylate aminotransferase activity, and revertants to the phenotype of 20S and 82G regained serine–glyoxylate aminotransferase activity. A total revertant of 82GT-1 to wild-type phenotype regained activities of serine hydroxymethyltransferase and serine–glyoxylate aminotransferase. 4. The activity of serine–glyoxylate aminotransferase in methanol-grown Pseudomonas AM1 is eightfold higher than in the succinate-grown organism. 5. The combined results show that in Pseudomonas AM1 serine–glyoxylate aminotransferase is necessary for growth on C1 compounds and is involved in the conversion of methanol into glycine via glyoxylate. 6. It is suggested that the phosphorylated pathway of serine biosynthesis from phosphoglycerate replenishes the supply of α-amino groups necessary for the flow of glyoxylate through the main assimilatory pathway during growth on C1 compounds.

Full text

PDF
765

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackmore M. A., Quayle J. R. Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem J. 1970 Jun;118(1):53–59. doi: 10.1042/bj1180053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harder W., Quayle J. R. The biosynthesis of serine and glycine in Pseudomonas AM1 with special reference to growth on carbon sources other than C1 compounds. Biochem J. 1971 Mar;121(5):753–762. doi: 10.1042/bj1210753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heptinstall J., Quayle J. R. Pathways leading to and from serine during growth of Pseudomonas AM1 on C1 compounds or succinate. Biochem J. 1970 Apr;117(3):563–572. doi: 10.1042/bj1170563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KOHLHAW G., DEUS B., HOLZER H. ENZYMATIC PREPARATION, STRUCTURE, AND PROPERTIES OF THIAMINE PYROPHOSPHATE-ACTIVATED FORMALDEHYDE. J Biol Chem. 1965 May;240:2135–2141. [PubMed] [Google Scholar]
  5. Klein S. M., Sagers R. D. Glycine metabolism. I. Properties of the system catalyzing the exchange of bicarbonate with the carboxyl group of glycine in Peptococcus glycinophilus. J Biol Chem. 1966 Jan 10;241(1):197–205. [PubMed] [Google Scholar]
  6. Kochi H., Kikuchi G. Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of Arthrobacter globiformis grown on glycine. Arch Biochem Biophys. 1969 Jul;132(2):359–369. doi: 10.1016/0003-9861(69)90377-4. [DOI] [PubMed] [Google Scholar]
  7. LARGE P. J., PEEL D., QUAYLE J. R. Microbial growth on C1 compounds. II. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM 1, and methanol-grown Hyphomicrobium vulgare. Biochem J. 1961 Dec;81:470–480. doi: 10.1042/bj0810470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Large P. J., Peel D., Quayle J. R. Microbial growth on C(1) compounds. 3. Distribution of radioactivity in metabolites of methanol-grown Pseudomonas AM1 after incubation with [C]methanol and [C]bicarbonate. Biochem J. 1962 Mar;82(3):483–488. doi: 10.1042/bj0820483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Large P. J., Peel D., Quayle J. R. Microbial growth on C(1) compounds. 4. Carboxylation of phosphoenolpyruvate in methanol-grown Pseudomonas AM1. Biochem J. 1962 Oct;85(1):243–250. doi: 10.1042/bj0850243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Large P. J., Quayle J. R. Microbial growth on C(1) compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. Biochem J. 1963 May;87(2):386–396. doi: 10.1042/bj0870386. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES