Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Apr;122(2):209–218. doi: 10.1042/bj1220209

Amino acid sequences around the cysteine residues of rabbit muscle triose phosphate isomerase

Janet C Miller 1, S G Waley 1
PMCID: PMC1176764  PMID: 5165707

Abstract

1. The nature of the subunits in rabbit muscle triose phosphate isomerase has been investigated. 2. Amino acid analyses show that there are five cysteine residues and two methionine residues/subunit. 3. The amino acid sequences around the cysteine residues have been determined; these account for about 75 residues. 4. Cleavage at the methionine residues with cyanogen bromide gave three fragments. 5. These results show that the subunits correspond to polypeptide chains, containing about 230 amino acid residues. The chains in triose phosphate isomerase seem to be shorter than those of other glycolytic enzymes.

Full text

PDF
212

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMBLER R. P. THE AMINO ACID SEQUENCE OF PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:349–378. doi: 10.1042/bj0890349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambler R. P., Meadway R. J. The use of thermolysin in amino acid sequence determination. Biochem J. 1968 Aug;108(5):893–895. doi: 10.1042/bj1080893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barman T. E., Koshland D. E., Jr A colorimetric procedure for the quantitative determination of tryptophan residues in proteins. J Biol Chem. 1967 Dec 25;242(23):5771–5776. [PubMed] [Google Scholar]
  4. Beale D. A partial amino acid sequence for sheep haemoblogin A. Biochem J. 1967 Apr;103(1):129–140. doi: 10.1042/bj1030129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burton P. M., Waley S. G. Studies on the sub-units of triose phosphate isomerase. Biochem J. 1968 May;107(6):737–744. doi: 10.1042/bj1070737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burton P. M., Waley S. G. The active centre of triose phosphate isomerase. Biochem J. 1966 Sep;100(3):702–710. doi: 10.1042/bj1000702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crowshaw K., Jessup S. J., Ramwell P. W. Thin-layer chromatography of 1-dimethylaminonaphthalene-5-sulphonyl derivatives of amino acids present in superfusates of cat cerebral cortex. Biochem J. 1967 Apr;103(1):79–85. doi: 10.1042/bj1030079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Delaage M. Sur la recherche du poids moléculaire le plus cohérent avec l'analyse des acides aminés d'une protéine. Biochim Biophys Acta. 1968 Dec 3;168(3):573–575. [PubMed] [Google Scholar]
  9. Drapeau G. R., Yanofsky C. The amino acid sequence of the A protein (alpha subunit) of the tryptophan synthetase of Escherichia coli. IV. The cyanogen bromide fragments of the A protein. J Biol Chem. 1967 Nov 25;242(22):5434–5441. [PubMed] [Google Scholar]
  10. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  11. GRASSMANN W., HANNIG K., PLOCKL M. Eine Methode zur quantitativen Bestimmung der Aminosäurezusammensetzung von Eiweisshydrolysaten durch Kombination von Elektrophorese und Chromatographie. Hoppe Seylers Z Physiol Chem. 1955;299(5-6):258–276. [PubMed] [Google Scholar]
  12. HEILMANN J., BARROLLIER J., WATZKE E. Beitrag zur Aminosäurebestimmung auf Papierchromatogrammen. Hoppe Seylers Z Physiol Chem. 1957;309(4-6):219–220. [PubMed] [Google Scholar]
  13. HIRS C. H., STEIN W. H., MOORE S. The amino acid composition of ribonuclease. J Biol Chem. 1954 Dec;211(2):941–950. [PubMed] [Google Scholar]
  14. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hill R. L. Hydrolysis of proteins. Adv Protein Chem. 1965;20:37–107. doi: 10.1016/s0065-3233(08)60388-5. [DOI] [PubMed] [Google Scholar]
  16. Katz E. P. Molecular weight determination from amino acid analysis data: a numerical method. Anal Biochem. 1968 Oct 24;25(1):417–431. doi: 10.1016/0003-2697(68)90117-6. [DOI] [PubMed] [Google Scholar]
  17. Keutmann H. T., Potts J. T., Jr Improved recovery of methionine after acid hydrolysis using mercaptoethanol. Anal Biochem. 1969 May;29(2):175–185. doi: 10.1016/0003-2697(69)90300-5. [DOI] [PubMed] [Google Scholar]
  18. Krietsch W. K., Pentchev P. G., Klingenbürg H., Hofstätter T., Bücher T. The isolation and crystallization of yeast and rabbit liver triose phosphate isomerase and a comparative characterization with the rabbit muscle enzyme. Eur J Biochem. 1970 Jun;14(2):289–300. doi: 10.1111/j.1432-1033.1970.tb00289.x. [DOI] [PubMed] [Google Scholar]
  19. Lai C. Y., Chen C., Horecker B. L. Primary structure of two COOH-terminal hexapeptides from rabbit muscle aldolase: a difference in the structure of the alpha and beta subunits. Biochem Biophys Res Commun. 1970 Jul 27;40(2):461–468. doi: 10.1016/0006-291x(70)91031-4. [DOI] [PubMed] [Google Scholar]
  20. Mier P. D., Cotton D. W. Operon hypothesis: new evidence from the "constant proportion" group of the Embden-Meyerhof pathway. Nature. 1966 Mar 5;209(5027):1022–1023. doi: 10.1038/2091022b0. [DOI] [PubMed] [Google Scholar]
  21. Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
  22. Perham R. N. The comparative structure of mammalian glyceraldehyde 3-phosphate dehydrogenases. Biochem J. 1969 Jan;111(1):17–21. doi: 10.1042/bj1110017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SMITH I. Colour reactions on paper chromatograms by a dipping technique. Nature. 1953 Jan 3;171(4340):43–44. doi: 10.1038/171043a0. [DOI] [PubMed] [Google Scholar]
  24. Scopes R. K. Methods for starch-gel electrophoresis of sarcoplasmic proteins. An investigation of the relative mobilities of the glycolytic enzymes from the muscles of a variety of species. Biochem J. 1968 Mar;107(2):139–150. doi: 10.1042/bj1070139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spande T. F., Wilchek M., Witkop B. The reaction of derivatives of tryptophan, tryptamine, and other indoles with 2-hydroxy-5-nitrobenzyl bromide (Koshland's reagent). J Am Chem Soc. 1968 Jun 5;90(12):3256–3258. doi: 10.1021/ja01014a061. [DOI] [PubMed] [Google Scholar]
  26. WALEY S. G., WATSON J. The action of trypsin on polylysine. Biochem J. 1953 Sep;55(2):328–337. doi: 10.1042/bj0550328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WITKOP B. Nonenzymatic methods for the preferential and selective cleavage and modification of proteins. Adv Protein Chem. 1961;16:221–321. doi: 10.1016/s0065-3233(08)60031-5. [DOI] [PubMed] [Google Scholar]
  28. Waley S. G. Structural studies of alpha-crystallin. Biochem J. 1965 Sep;96(3):722–728. doi: 10.1042/bj0960722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Woods K. R., Wang K. T. Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta. 1967 Feb 21;133(2):369–370. doi: 10.1016/0005-2795(67)90078-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES