Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Jul;123(3):331–339. doi: 10.1042/bj1230331

Isoprenoid phenol and quinone precursors of ubiquinones and dihydroubiquinones [ubiquinones(H2)] in fungi

Ah Law 1, D R Threlfall 1, G R Whistance 1
PMCID: PMC1176963  PMID: 5166547

Abstract

1. Ten moulds and two yeasts were analysed for the presence of 2-polyprenylphenols, 2-polyprenyl(H2)phenols, 6-methoxy-2-polyprenylphenols, 6-methoxy-2-polyprenyl(H2)phenols, 6-methoxy-2-polyprenyl-1,4-benzoquinones, 6-methoxy-2-polyprenyl(H2)-1,4-benzoquinones, 5-demethoxyubiquinones, 5-demethoxyubiquinones(H2), ubiquinones and ubiquinones(H2). 2. The organisms were found to be of three types: (a) those that contained only ubiquinones (Aspergillus fumigatus and Penicillium brevi-compactum) or ubiquinones(H2) (Alternaria solani, Claviceps purpurae and Penicillium stipitatum); (b) those that contained 5-demethoxyubiquinones and ubiquinones (Agaricus campestris, Aspergillus niger, Phycomyces blakesleeanus, Rhodotorula glutinis and Saccharomyces cerevisiae) or 5-demethoxyubiquinones(H2) and ubiquinones(H2) (Aspergillus quadrilineatus and Neurospora crassa); (c) one that contained 2-decaprenyl(H2)phenol, 6-methoxy-2-decaprenyl(H2)phenol, 6-methoxy-2-decaprenyl(X-H2)-1,4-benzoquinone, 5-demethoxyubiquinone-10(X-H2) and ubiquinones(H2) (Aspergillus flavus). 3. Studies were made on the biosynthesis of ubiquinones and ubiquinones(H2) by Asp. flavus, Phyc. blakesleeanus and S. cerevisiae. These provided evidence that in Phyc. blakesleeanus 5-demethoxyubiquinone-9 is a precursor of ubiquinone-9 and that in S. cerevisiae 5-demethoxyubiquinone-6 is a precursor of ubiquinone-6. In addition they yielded results that may be interpreted as providing evidence that in Asp. flavus 6-methoxy-2-decaprenyl(X-H2)-1,4-benzoquinone and 5-demethoxyubiquinone-10(X-H2) are precursors of ubiquinone-10(X-H2).

Full text

PDF
332

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castagnoli N., Jr, Mantle P. G. Occurrence of D-lysergic acid and 6-methylergol-8-ene-8-carboxylic acid in cultures of Claviceps purpurea. Nature. 1966 Aug 20;211(5051):859–860. doi: 10.1038/211859b0. [DOI] [PubMed] [Google Scholar]
  2. Daves G. D., Jr, Friis P., Olsen R. K., Folkers K. The chemistry of ubiquinone. Vitam Horm. 1966;24:427–439. doi: 10.1016/s0083-6729(08)60214-9. [DOI] [PubMed] [Google Scholar]
  3. Daves G. D., Jr, Wilczynski J. J., Friis P., Folkers K. Synthesis of rhodoquinone and other multiprenyl-1,4-benzoquinones biosynthetically related to ubiquinone. J Am Chem Soc. 1968 Sep 25;90(20):5587–5593. doi: 10.1021/ja01022a050. [DOI] [PubMed] [Google Scholar]
  4. Friis P., Nilsson J. L., Daves G. D., Jr, Folkers K. New multiprenylquinones in the biosynthesis of ubiquinone. Biochem Biophys Res Commun. 1967 Aug 7;28(3):324–327. doi: 10.1016/0006-291x(67)90312-9. [DOI] [PubMed] [Google Scholar]
  5. GALE P. H., ARISON B. H., TRENNER N. R., PAGE AC Jr FOLKERS K. Coenzyme Q. 36. Isolation and characterization of coenzyme Q10 (H-10). Biochemistry. 1963 Jan-Feb;2:196–200. doi: 10.1021/bi00901a037. [DOI] [PubMed] [Google Scholar]
  6. GOODWIN T. W., LIJINSKY W. Studies in carotenogenesis. II. Carotene production by Phycomyces blakesleeanus; the effect of different amino-acids when used in media containing low concentrations of glucose. Biochem J. 1951 Dec;50(2):268–273. doi: 10.1042/bj0500268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LAVATE W. V., BENTLEY R. DISTRIBUTION OF NORMAL ISOPRENOLOGS OF COENZYME Q AND DIHYDRO COENZYME Q10 IN VARIOUS MOLDS. Arch Biochem Biophys. 1964 Nov;108:287–291. doi: 10.1016/0003-9861(64)90389-3. [DOI] [PubMed] [Google Scholar]
  8. LAVATE W. V., DYER J. R., SPRINGER C. M., BENTLEY R. STUDIES ON COENZYME Q. THE ISOLATION, CHARACTERIZATION, AND GENERAL PROPERTIES OF A PARTLY REDUCED COENZYME Q10 FROM PENICILLIUM STIPITATUM. J Biol Chem. 1965 Jan;240:524–531. [PubMed] [Google Scholar]
  9. LAWSON D. E., THRELFALL D. R., GLOVER J., MORTON R. A. Biosynthesis of ubiquinone in the rat. Biochem J. 1961 Apr;79:201–208. doi: 10.1042/bj0790201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LESTER R. L., CRANE F. L. The natural occurrence of coenzyme Q and related compounds. J Biol Chem. 1959 Aug;234(8):2169–2175. [PubMed] [Google Scholar]
  11. Law A., Threlfall D. R., Whistance G. R. Isoprenoid quinone precursors of ubiquinone-10(X-H2) in Aspergillus flavus. Biochem J. 1970 May;117(4):799–800. doi: 10.1042/bj1170799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Olsen R. K., Daves G. D., Jr, Moore H. W., Folkers K., Parson W. W., Rudney H. 2-multiprenylphenols and 2-decaprenyl-6-methoxyphenol, biosynthetic precursors of ubiquinones. J Am Chem Soc. 1966 Dec 20;88(24):5919–5923. doi: 10.1021/ja00976a036. [DOI] [PubMed] [Google Scholar]
  13. PACKTER N. M., GLOVER J. Ubiquinone (50) and ubichromenol in Aspergillus fumigatus Fresenius. Nature. 1960 Jul 30;187:413–414. doi: 10.1038/187413b0. [DOI] [PubMed] [Google Scholar]
  14. PARSON W. W., RUDNEY H. AN INTERMEDIATE IN THE CONVERSION OF P-HYDROXYBENZOATE-U-C-14 TO UBIQUINONE IN RHODOSPIRILLUM RUBRUM. Proc Natl Acad Sci U S A. 1965 Mar;53:599–606. doi: 10.1073/pnas.53.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PARSON W. W., RUDNEY H. THE BIOSYNTHESIS OF THE BENZOQUINONE RING OF UBIQUINONE FROM P-HYDROXYBENZALDEHYDE AND P-HYDROXYBENZOIC ACID IN RAT KIDNEY, AZOTOBACTER VINELANDII, AND BAKER'S YEAST. Proc Natl Acad Sci U S A. 1964 Mar;51:444–450. doi: 10.1073/pnas.51.3.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spiller G. H., Threlfall D. R., Whistance G. R. Biosynthesis of ubiquinone in yeast, Phycomyces blakesleeanus, and Agaricus campestris. Arch Biochem Biophys. 1968 Jun;125(3):786–796. doi: 10.1016/0003-9861(68)90515-8. [DOI] [PubMed] [Google Scholar]
  17. Threlfall D. R., Goodwin T. W. Nature, intracellular distribution and formation of terpenoid quinones in Euglena gracilis. Biochem J. 1967 May;103(2):573–588. doi: 10.1042/bj1030573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Threlfall D. R., Whistance G. R., Goodwin T. W. Biosynthesis of phytoquinones. Incorporation of L-[Me-14C,3H]methionine into terpenoid quinones and chromanols in maize shoots. Biochem J. 1968 Jan;106(1):107–112. doi: 10.1042/bj1060107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Whistance G. R., Brown B. S., Threlfall D. R. Biosynthesis of ubiquinone in non-photosynthetic gram-negative bacteria. Biochem J. 1970 Mar;117(1):119–128. doi: 10.1042/bj1170119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whistance G. R., Brown B. S., Threlfall D. R. Isolation of possible ubiquinone precursors from nonphotosynthetic Gram-negative bacteria. Biochim Biophys Acta. 1969 Jun 10;176(4):895–897. doi: 10.1016/0005-2760(69)90275-6. [DOI] [PubMed] [Google Scholar]
  21. Whistance G. R., Dillon J. F., Threlfall D. R. The nature, intergeneric distribution and biosynthesis of isoprenoid quinones and phenols in gram-negative bacteria. Biochem J. 1969 Feb;111(4):461–472. doi: 10.1042/bj1110461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Whistance G. R., Threlfall D. R., Goodwin T. W. Observations on the biosynthesis of phytoterpenoid quinone and chromanol nuclei. Biochem J. 1967 Oct;105(1):145–154. doi: 10.1042/bj1050145. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES