Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Apr;131(4):771–780. doi: 10.1042/bj1310771

The chemistry of the collagen cross-links. Age-related changes in the reducible components of intact bovine collagen fibres

Simon P Robins *, Massami Shimokomaki , Allen J Bailey
PMCID: PMC1177537  PMID: 4722452

Abstract

The change in the amounts of the three major reducible cross-links was followed throughout the bovine-life span. The major reducible cross-link in embryonic skin is 6,7-dehydro-Nε -(2-hydroxy-5-amino-5-carboxypentyl)hydroxylysine, but this is gradually replaced in the latter stages of gestation or early postnatal growth period by two other Schiff bases, 6,7-dehydro-Nε-(5-amino-5-carboxypentyl)hydroxylysine and a component not yet identified, designated Fraction C. These latter two Schiff bases increase in amount during the rapid growth period to a maximum, after which they then slowly decrease until at maturity they are virtually absent. The proportion of these Schiff bases closely reflects the rate of growth, i.e. the amount of newly synthesized collagen present at any one time. Similarly, the three Schiff bases present in tendon and the one in cartilage slowly decrease during maturation. No evidence for the possible stabilization of these aldimine bonds during maturation by reduction in vivo was found by three different analytical techniques. Concurrently with the decrease in the proportion of the Schiff bases some new reducible components increased during maturation, but their characterization as Nε-glycosylamines demonstrated that they were not related to the lysine-derived aldehyde components. The significance of these components in the aging process cannot at present be assessed. As no evidence was obtained for any new reducible cross-links replacing the Schiff bases, it is probable that the latter are intermediate cross-links and that during maturation they are stabilized to some as yet unknown non-reducible cross-link as previously proposed (Bailey, 1968).

Full text

PDF
773

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey A. J. Intermediate labile intermolecular crosslinks in collagen fibres. Biochim Biophys Acta. 1968 Aug 13;160(3):447–453. doi: 10.1016/0005-2795(68)90216-x. [DOI] [PubMed] [Google Scholar]
  2. Bailey A. J., Peach C. M., Fowler L. J. Chemistry of the collagen cross-links. Isolation and characterization of two intermediate intermolecular cross-links in collagen. Biochem J. 1970 May;117(5):819–831. doi: 10.1042/bj1170819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey A. J., Peach C. M. Isolation and structural identification of a labile intermolecular crosslink in collagen. Biochem Biophys Res Commun. 1968 Dec 9;33(5):812–819. doi: 10.1016/0006-291x(68)90233-7. [DOI] [PubMed] [Google Scholar]
  4. Bailey A. J., Peach C. M. The chemistry of the collagen cross-links. The absence of reduction of dehydrolysinonorleucine and dehydrohydroxylysinonorleucine in vivo. Biochem J. 1971 Jan;121(2):257–259. doi: 10.1042/bj1210257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bailey A. J., Robins S. P. Embryonic skin collagen. Replacement of the type of aldimine crosslinks during the early growth period. FEBS Lett. 1972 Apr 1;21(3):330–334. doi: 10.1016/0014-5793(72)80195-9. [DOI] [PubMed] [Google Scholar]
  6. Bailey A. J., Shimokomaki M. S. Age related changes in the reducible cross-links of collagen. FEBS Lett. 1971 Aug 1;16(2):86–88. doi: 10.1016/0014-5793(71)80338-1. [DOI] [PubMed] [Google Scholar]
  7. Barnes M. J., Constable B. J., Morton L. F., Kodicek E. Hydroxylysine in the N-terminal regions of the 1 - and 2 -chains of various collagens. Biochem J. 1971 Nov;125(2):433–437. doi: 10.1042/bj1250433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bookchin R. M., Gallop P. M. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group. Biochem Biophys Res Commun. 1968 Jul 11;32(1):86–93. doi: 10.1016/0006-291x(68)90430-0. [DOI] [PubMed] [Google Scholar]
  9. Bornstein P., Piez K. A. The nature of the intramolecular cross-links in collagen. The separation and characterization of peptides from the cross-link region of rat skin collagen. Biochemistry. 1966 Nov;5(11):3460–3473. doi: 10.1021/bi00875a012. [DOI] [PubMed] [Google Scholar]
  10. Davis N. R., Bailey A. J. Chemical synthesis of the reduced form of an intermolecular crosslink of collagen: a re-evaluation of the structure of syndesine. Biochem Biophys Res Commun. 1971 Dec 17;45(6):1416–1422. doi: 10.1016/0006-291x(71)90178-1. [DOI] [PubMed] [Google Scholar]
  11. Deshmukh A., Deshmukh K., Nimni M. E. Synthesis of aldehydes and their interactions during the in vitro aging of collagen. Biochemistry. 1971 Jun 8;10(12):2337–2342. doi: 10.1021/bi00788a025. [DOI] [PubMed] [Google Scholar]
  12. Deshmukh K., Nimni M. E. Identification of stable intermolecular crosslinks present in reconstituted native collagen fibers. Biochem Biophys Res Commun. 1972 Jan 14;46(1):175–182. doi: 10.1016/0006-291x(72)90647-x. [DOI] [PubMed] [Google Scholar]
  13. Fessler J. H., Bailey A. J. Cleavage of cross-links between the protein chains of gelatin by beta-amino propionitrile. Fed Proc. 1966 May-Jun;25(3):1022–1022. [PubMed] [Google Scholar]
  14. GRANT R. A. ESTIMATION OF HYDROXYPROLINE BY THE AUTOANALYSER. J Clin Pathol. 1964 Nov;17:685–686. doi: 10.1136/jcp.17.6.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. GROSS J. An intermolecular defect of collagen in experimental lathyrism. Biochim Biophys Acta. 1963 Apr 2;71:250–252. doi: 10.1016/0006-3002(63)91079-5. [DOI] [PubMed] [Google Scholar]
  16. Holmquist W. R., Schroeder W. A. A new N-terminal blocking group involving a Schiff base in hemoglobin AIc. Biochemistry. 1966 Aug;5(8):2489–2503. doi: 10.1021/bi00872a002. [DOI] [PubMed] [Google Scholar]
  17. Kang A. H., Bornstein P., Piez K. A. The amino acid sequence of peptides from the cross-linking region of rat skin collagen. Biochemistry. 1967 Mar;6(3):788–795. doi: 10.1021/bi00855a019. [DOI] [PubMed] [Google Scholar]
  18. Kang A. H., Faris B., Franzblau C. The in vitro formation of intermolecular cross-links in chick skin collagen. Biochem Biophys Res Commun. 1970 Apr 8;39(1):175–182. doi: 10.1016/0006-291x(70)90774-6. [DOI] [PubMed] [Google Scholar]
  19. Mechanic G., Gallop P. M., Tanzer M. L. The nature of crosslinking in collagens from mineralized tissues. Biochem Biophys Res Commun. 1971 Nov 5;45(3):644–653. doi: 10.1016/0006-291x(71)90465-7. [DOI] [PubMed] [Google Scholar]
  20. Miller E. J., Epstein E. H., Jr, Piez K. A. Identification of three genetically distinct collagens by cyanogen bromide cleavage of insoluble human skin and cartilage collagen. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1024–1029. doi: 10.1016/0006-291x(71)90006-4. [DOI] [PubMed] [Google Scholar]
  21. Miller E. J. Isolation and characterization of a collagen from chick cartilage containing three identical alpha chains. Biochemistry. 1971 Apr 27;10(9):1652–1659. doi: 10.1021/bi00785a024. [DOI] [PubMed] [Google Scholar]
  22. Miller E. J., Lane J. M., Piez K. A. Isolation and characterization of the peptides derived from the alpha-1 chain of chick bone collagen after cyanogen bromide cleavage. Biochemistry. 1969 Jan;8(1):30–39. doi: 10.1021/bi00829a006. [DOI] [PubMed] [Google Scholar]
  23. Paz M. A., Gallop P. M., Blumenfeld O. O., Henson E., Seifter S. The presence in elastin of possible cyclic precursors of desmosine and isodesmosine. Biochem Biophys Res Commun. 1971 Apr 16;43(2):289–297. doi: 10.1016/0006-291x(71)90751-0. [DOI] [PubMed] [Google Scholar]
  24. Paz M. A., Henson E., Rombauer R., Abrash L., Blumenfeld O. O., Gallop P. M. Alpha-amino alcohols as products of a reductive side reaction of denatured collagen with sodium borohydride. Biochemistry. 1970 May 12;9(10):2123–2127. doi: 10.1021/bi00812a014. [DOI] [PubMed] [Google Scholar]
  25. Rauterberg J., Kühn K. Acid soluble calf skin collagen. Characterization of the peptides obtained by cyanogen bromide cleavage of its alpha-1-chain. Eur J Biochem. 1971 Apr;19(3):398–407. doi: 10.1111/j.1432-1033.1971.tb01329.x. [DOI] [PubMed] [Google Scholar]
  26. Robins S. P., Bailey A. J. Age-related changes in collagen: the identification of reducible lysine-carbohydrate condensation products. Biochem Biophys Res Commun. 1972 Jul 11;48(1):76–84. doi: 10.1016/0006-291x(72)90346-4. [DOI] [PubMed] [Google Scholar]
  27. STEGEMANN H. Mikrobestimmung von Hydroxyprolin mit Chloramin-T und p-Dimethylaminobenzaldehyd. Hoppe Seylers Z Physiol Chem. 1958;311(1-3):41–45. [PubMed] [Google Scholar]
  28. Stark M., Rauterberg J., Kühn K. Evidence for a non-helical region at the carboxyl terminus of the collagen molecule. FEBS Lett. 1971 Feb 19;13(2):101–104. doi: 10.1016/0014-5793(71)80209-0. [DOI] [PubMed] [Google Scholar]
  29. Tanzer M. L., Fairweather R., Gallop P. M. Collagen crosslinks: isolation of reduced N -hexosylhydroxylysine from borohydride-reduced calf skin insoluble collagen. Arch Biochem Biophys. 1972 Jul;151(1):137–141. doi: 10.1016/0003-9861(72)90482-1. [DOI] [PubMed] [Google Scholar]
  30. Tanzer M. L., Mechanic G., Gallop P. M. Isolation of hydroxylsinonorleucine and its lactone from reconstituted collagen fibrils. Biochim Biophys Acta. 1970 Jun 23;207(3):548–552. doi: 10.1016/s0005-2795(70)80017-4. [DOI] [PubMed] [Google Scholar]
  31. Verzár F. Aging of the collagen fiber. Int Rev Connect Tissue Res. 1964;2:243–300. doi: 10.1016/b978-1-4831-6751-0.50012-4. [DOI] [PubMed] [Google Scholar]
  32. WIRTSCHAFTER Z. T., BENTLEY J. P. The influence of age and growth rate on the extractable collagen of skin of normal rats. Lab Invest. 1962 Apr;11:316–320. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES