Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Jun;134(2):581–586. doi: 10.1042/bj1340581

A model study of the fructose diphosphatase–phosphofructokinase substrate cycle

David P Bloxham 1, Michael G Clark 1, Paul C Holland 1, Henry A Lardy 1
PMCID: PMC1177845  PMID: 16742819

Abstract

A fructose diphosphatase–phosphofructokinase substrate cycle has been reconstructed in vitro to provide a system that recycles fructose 6-phosphate and hydrolyses ATP to ADP and Pi. The concerted actions of glucose phosphate isomerase, phosphofructokinase, aldolase and triose phosphate isomerase catalysed the loss of 3H from [5-3H,U-14C]glucose 6-phosphate. This was used as the basis of a method for the estimation of the fructose diphosphatase–phosphofructokinase substrate cycle. For the reconstructed cycle, the rate of decrease of the 3H/14C ratio in [5-3H,U-14C]hexose 6-phosphate was proportional to the rate of fructose 6-phosphate substrate cycling. A detailed theoretical treatment of this relationship is developed, which enables the rate of substrate cycling to be determined in vivo.

Full text

PDF
584

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloxham D. P., Clark M. G., Goldberg D. M., Holland P. C., Lardy H. A. Appendix: The theoretical estimation of substrate cycling in vivo. Biochem J. 1973 Jun;134(2):586–587. doi: 10.1042/bj1340586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark M. G., Bloxham D. P., Holland P. C., Lardy H. A. Estimation of the fructose diphosphatase-phosphofructokinase substrate cycle in the flight muscle of Bombus affinis. Biochem J. 1973 Jun;134(2):589–597. doi: 10.1042/bj1340589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. LING K. H., MARCUS F., LARDY H. A. PURIFICATION AND SOME PROPERTIES OF RABBIT SKELETAL MUSCLE PHOSPHOFRUCTOKINASE. J Biol Chem. 1965 May;240:1893–1899. [PubMed] [Google Scholar]
  4. MENDICINO J., VASARHELY F. RENAL D-FRUCTOSE 1,6-DIPHOSPHATASE. J Biol Chem. 1963 Nov;238:3528–3534. [PubMed] [Google Scholar]
  5. Newsholme E. A., Crabtree B., Higgins S. J., Thornton S. D., Start C. The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem J. 1972 Jun;128(1):89–97. doi: 10.1042/bj1280089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Newsholme E. A., Crabtree B. The role of fructose-1,6-diphosphatase in the regulation of glycolysis in skeletal muscle. FEBS Lett. 1970 Apr 2;7(2):195–198. doi: 10.1016/0014-5793(70)80155-7. [DOI] [PubMed] [Google Scholar]
  7. Newsholme E. A., Gevers W. Control of glycolysis and gluconeogenesis in liver and kidney cortex. Vitam Horm. 1967;25:1–87. doi: 10.1016/s0083-6729(08)60033-3. [DOI] [PubMed] [Google Scholar]
  8. Opie L. H., Newsholme E. A. The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle. Biochem J. 1967 May;103(2):391–399. doi: 10.1042/bj1030391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PASSONNEAU J. V., LOWRY O. H. Phosphofructokinase and the Pasteur effect. Biochem Biophys Res Commun. 1962 Feb 20;7:10–15. doi: 10.1016/0006-291x(62)90134-1. [DOI] [PubMed] [Google Scholar]
  10. Parmeggiani A., Luft J. H., Love D. S., Krebs E. G. Crystallization and properties of rabbit skeletal muscle phosphofructokinase. J Biol Chem. 1966 Oct 25;241(20):4625–4637. [PubMed] [Google Scholar]
  11. ROSE I. A. Mechanism of C-H bond cleavage in aldolase and isomerase reactions. Brookhaven Symp Biol. 1962 Dec;15:293–309. [PubMed] [Google Scholar]
  12. SHONK C. E., BOXER G. E. ENZYME PATTERNS IN HUMAN TISSUES. I. METHODS FOR THE DETERMINATION OF GLYCOLYTIC ENZYMES. Cancer Res. 1964 May;24:709–721. [PubMed] [Google Scholar]
  13. TAKETA K., POGELL B. M. ALLOSTERIC INHIBITION OF RAT LIVER FRUCTOSE 1,6-DIPHOSPHATASE BY ADENOSINE 5'-MONOPHOSPHATE. J Biol Chem. 1965 Feb;240:651–662. [PubMed] [Google Scholar]
  14. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  15. UNDERWOOD A. H., NEWSHOLME E. A. SOME PROPERTIES OF FRUCTOSE 1,6-DIPHOSPHATASE OF RAT LIVER AND THEIR RELATION TO THE CONTROL OF GLUCONEOGENESIS. Biochem J. 1965 Jun;95:767–774. doi: 10.1042/bj0950767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Underwood A. H., Newsholme E. A. Control of glycolysis and gluconeogenesis in rat kidney cortex slices. Biochem J. 1967 Jul;104(1):300–305. doi: 10.1042/bj1040300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Williamson J. R., Jákob A., Scholz R. Energy cost of gluconeogenesis in rat liver. Metabolism. 1971 Jan;20(1):13–26. doi: 10.1016/0026-0495(71)90056-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES