Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Nov;125(2):489–493. doi: 10.1042/bj1250489

The energy-linked transhydrogenase reaction in respiratory mutants of Escherichia coli K 12

G B Cox 1, N A Newton 1, J D Butlin 1, F Gibson 1
PMCID: PMC1178083  PMID: 4335691

Abstract

1. Energy-linked and non-energy-linked transhydrogenase activities were assayed in membrane preparations from normal Escherichia coli K 12 and from various mutant strains. 2. The energy-linked transhydrogenase, which uses ATP as energy source, was dependent for activity on the presence of a functional Mg2++Ca2+-stimulated adenosine triphosphatase. 3. Neither of the quinones formed by E. coli, namely ubiquinone-8 and menaquinone-8, was required for normal ATP-dependent energy-linked transhydrogenase activity. 4. The energy-linked transhydrogenase was inhibited by piericidin A at a site unrelated to the sites of inhibition of the electron-transport chain by piericidin A.

Full text

PDF
489

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albracht S. P.J., Van Heerikhuizen H., Slater E. C. Succinate oxidase activity in the absence of ubiquinone. FEBS Lett. 1971 Mar 22;13(5):265–266. doi: 10.1016/0014-5793(71)80236-3. [DOI] [PubMed] [Google Scholar]
  2. Asano A., Imai K., Sato R. Oxidative phosphorylation in Micrococcus dentrificans. II. The properties of pyridine nucleotide transhydrogenase. Biochim Biophys Acta. 1967;143(3):477–486. doi: 10.1016/0005-2728(67)90053-9. [DOI] [PubMed] [Google Scholar]
  3. Ball E. G., Cooper O. THE OXIDATION OF REDUCED TRIPHOSPHOPYRIDINE NUCLEOTIDE AS MEDIATED BY THE TRANSHYDROGENASE REACTION AND ITS INHIBITION BY THYROXINE. Proc Natl Acad Sci U S A. 1957 May 15;43(5):357–364. doi: 10.1073/pnas.43.5.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butlin J. D., Cox G. B., Gibson F. Oxidative phosphorylation in Escherichia coli K12. Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphatase. Biochem J. 1971 Aug;124(1):75–81. doi: 10.1042/bj1240075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox G. B., Newton N. A., Gibson F., Snoswell A. M., Hamilton J. A. The function of ubiquinone in Escherichia coli. Biochem J. 1970 Apr;117(3):551–562. doi: 10.1042/bj1170551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox G. B., Young I. G., McCann L. M., Gibson F. Biosynthesis of ubiquinone in Escherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol. J Bacteriol. 1969 Aug;99(2):450–458. doi: 10.1128/jb.99.2.450-458.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffiths D. E., Roberton A. M. Energy-linked reactions in mitochondria: studies on the mechanism of the energy-linked transhydrogenase reaction. Biochim Biophys Acta. 1966 Jun 15;118(3):453–464. doi: 10.1016/s0926-6593(66)80089-9. [DOI] [PubMed] [Google Scholar]
  8. KAPLAN N. O., COLOWICK S. P., NEUFELD E. F. Pyridine nucleotide transhydrogenase. II. Direct evidence for and mechanism of the transhydrogenase reaction. J Biol Chem. 1952 Mar;195(1):107–119. [PubMed] [Google Scholar]
  9. KAPLAN N. O., COLOWICK S. P., NEUFELD E. F. Pyridine nucleotide transhydrogenase. III. Animal tissue transhydrogenases. J Biol Chem. 1953 Nov;205(1):1–15. [PubMed] [Google Scholar]
  10. KINSKY S. C. Hydrogen oxidation by Clostridium kluyveri. J Biol Chem. 1959 Apr;234(4):973–978. [PubMed] [Google Scholar]
  11. Keister D. L., Yike N. J. Studies on an energy-lined pyridine nucleotide transhydrogenase in photosynthetic bacteria. I. Demonstration of the reaction in Rhodospirillum rubrum. Biochem Biophys Res Commun. 1966 Aug 23;24(4):519–525. doi: 10.1016/0006-291x(66)90350-0. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
  14. MURTHY P. S., BRODIE A. F. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. XV. REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE-LINKED PHOSPHORYLATION. J Biol Chem. 1964 Dec;239:4292–4297. [PubMed] [Google Scholar]
  15. Newton N. A., Cox G. B., Gibson F. The function of menaquinone (vitamin K 2 ) in Escherichia coli K-12. Biochim Biophys Acta. 1971 Jul 20;244(1):155–166. doi: 10.1016/0304-4165(71)90132-2. [DOI] [PubMed] [Google Scholar]
  16. Orlando J. A., Sabo D., Curnyn C. Photoreduction of Pyridine Nucleotide by Subcellular Preparations from Rhodopseudomonas spheroides. Plant Physiol. 1966 Jun;41(6):937–945. doi: 10.1104/pp.41.6.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sweetman A. J., Griffiths D. E. Energy-linked reactions in mitochondria: A requirement for ubiquinone after pentane extraction. FEBS Lett. 1970 Sep 24;10(2):92–96. doi: 10.1016/0014-5793(70)80424-0. [DOI] [PubMed] [Google Scholar]
  18. Sweetman A. J., Griffiths D. E. Studies on energy-linked reactions. Energy-linked transhydrogenase reaction in Escherichia coli. Biochem J. 1971 Jan;121(1):125–130. doi: 10.1042/bj1210125. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES