Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Feb;126(3):727–738. doi: 10.1042/bj1260727

Escherichia coli alkaline phosphatase. Relaxation spectra of ligand binding

S E Halford 1,*
PMCID: PMC1178432  PMID: 4561620

Abstract

The temperature-jump technique was used to study the binding equilibrium between the Escherichia coli alkaline phosphatase dimer and 2-hydroxy-5-nitrobenzyl phosphonate in 0.1m-tris buffer, pH8.0. Three partially discrete relaxations were observed, two of which could be related to the bimolecular associations of ligand with different conformations of the enzyme and the third to the interconversion of these states. Relaxation spectra were also used to analyse the changes in the mechanism of ligand binding to alkaline phosphatase caused by increase in ionic strength. The relaxation spectrum observed after the addition of Pi to the equilibrium mixture of phosphonate and enzyme was also studied. Difference spectroscopy indicated that both of these ligands were bound to the alkaline phosphatase dimer at the same time. These results are related to the catalytic mechanism of this enzyme, with particular reference to the role of two identical subunits in a dimeric enzyme that exhibits only one active site functioning in catalysis at any given time.

Full text

PDF
728

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applebury M. L., Johnson B. P., Coleman J. E. Phosphate binding to alkaline phosphatase. Metal ion dependence. J Biol Chem. 1970 Oct 10;245(19):4968–4976. [PubMed] [Google Scholar]
  2. Brunori M. Kinetics of the reaction of Octopus vulgaris hemocyanin with oxygen. J Mol Biol. 1971 Jan 14;55(1):39–48. doi: 10.1016/0022-2836(71)90279-8. [DOI] [PubMed] [Google Scholar]
  3. HEPPEL L. A., HARKNESS D. R., HILMOE R. J. A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J Biol Chem. 1962 Mar;237:841–846. [PubMed] [Google Scholar]
  4. Halford S. E., Bennett N. G., Trentham D. R., Gutfeund H. A substate-induced conformation change in the reaction of alkaline phosphatase from Escherichia coli. Biochem J. 1969 Sep;114(2):243–251. doi: 10.1042/bj1140243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Halford S. E. Escherichia coli alkaline phosphatase. An analysis of transient kinetics. Biochem J. 1971 Nov;125(1):319–327. doi: 10.1042/bj1250319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harada K., Wolfe R. G. Malic dehydrogenase. VII. The catalytic mechanism and possible role of identical protein subunits. J Biol Chem. 1968 Aug 10;243(15):4131–4137. [PubMed] [Google Scholar]
  7. Lazdunski M., Petitclerc C., Chappelet D., Lazdunski C. Flip-flop mechanisms in enzymology. A model: the alkaline phosphatase of Escherichia coli. Eur J Biochem. 1971 May 11;20(1):124–139. doi: 10.1111/j.1432-1033.1971.tb01370.x. [DOI] [PubMed] [Google Scholar]
  8. McMurray C. H., Trentham D. R. A new class of chromophoric organomercurials and their reactions with D-glyceraldehyde 3-phosphate dehydrogenase. Biochem J. 1969 Dec;115(5):913–921. doi: 10.1042/bj1150913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ROTHMAN F., BYRNE R. Fingerprint analysis of alkaline phosphatase of Escherichia coli K12. J Mol Biol. 1963 Apr;6:330–340. doi: 10.1016/s0022-2836(63)80092-3. [DOI] [PubMed] [Google Scholar]
  10. Reid T. W., Wilson I. B. Conformational isomers of alkaline phosphatase in the mechanism of hydrolysis. Biochemistry. 1971 Feb 2;10(3):380–387. doi: 10.1021/bi00779a004. [DOI] [PubMed] [Google Scholar]
  11. Reynolds J. A., Schlesinger M. J. Formation and properties of a tetrameric form of Escherichia coli alkaline phosphatase. Biochemistry. 1969 Nov;8(11):4278–4282. doi: 10.1021/bi00839a008. [DOI] [PubMed] [Google Scholar]
  12. Trentham D. R., Gutfreund H. The kinetics of the reaction of nitrophenyl phosphates with alkaline phosphatase from Escherichia coli. Biochem J. 1968 Jan;106(2):455–460. doi: 10.1042/bj1060455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES