Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Feb;126(4):993–1004. doi: 10.1042/bj1260993

Folic acid and the methylation of homocysteine by Bacillus subtilis

A R Salem 1,*, J R Pattison 1, M A Foster 1
PMCID: PMC1178507  PMID: 4627401

Abstract

1. Cell-free extracts of Bacillus subtilis synthesize methionine from serine and homocysteine without added folate. The endogenous folate may be replaced by tetrahydropteroyltriglutamate or an extract of heated Escherichia coli for the overall C1 transfer, but tetrahydropteroylmonoglutamate is relatively inactive. 2. Extracts of B. subtilis contain serine transhydroxymethylase and 5,10-methylenetetrahydrofolate reductase, which are non-specific with respect to the glutamate content of the folate substrates. Methyl transfer to homocysteine requires a polyglutamate folate as methyl donor. These properties are not affected by growth of the organism with added vitamin B12. 3. The synthesis of methionine from 5-methyltetrahydropteroyltriglutamate and homocysteine has the characteristics of the cobalamin-independent reaction of E. coli. No evidence for a cobalamin-dependent transmethylation was obtained. 4. S-Adenosylmethionine was not a significant precursor of the methyl group of methionine with cell-free extracts, neither was S-adenosylmethionine generated by methylation of S-adenosylhomocysteine by 5-methyltetrahydrofolate. 5. A procedure for the isolation and analysis of folic acid derivatives from natural sources is described. 6. The folates isolated from lysozyme extracts of B. subtilis are sensitive to folic acid conjugase. One has been identified as 5-formyltetrahydropteroyltriglutamate; the other is possibly a diglutamate folate. 7. A sequence is proposed for methionine biosynthesis in B. subtilis in which methyl groups are generated from serine and transferred to homocysteine by means of a cobalamin-independent pathway mediated by conjugated folate coenzymes.

Full text

PDF
996

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARKER H. A., SMYTH R. D., WEISSBACH H., MUNCH-PETERSEN A., TOOHEY J. I., LADD J. N., VOLCANI B. E., WILSON R. M. Assay, purification, and properties of the adenylocobamide coenzyme. J Biol Chem. 1960 Jan;235:181–190. [PubMed] [Google Scholar]
  2. Bird O. D., McGlohon V. M., Vaitkus J. W. Naturally occurring folates in the blood and liver of the rat. Anal Biochem. 1965 Jul;12(1):18–35. doi: 10.1016/0003-2697(65)90138-7. [DOI] [PubMed] [Google Scholar]
  3. CHANG S. C. Availability of citrovorum factor in natural materials. J Biol Chem. 1953 Feb;200(2):827–833. [PubMed] [Google Scholar]
  4. Cauthen S. E., Foster M. A., Woods D. D. Methionine synthesis by extracts of Salmonella typhimurium. Biochem J. 1966 Feb;98(2):630–635. doi: 10.1042/bj0980630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cauthen S. E., Pattison J. R., Lascelles J. Vitamin B(12) in photosynthetic bacteria and methionine synthesis by Rhodopseudomonas spheroides. Biochem J. 1967 Mar;102(3):774–781. doi: 10.1042/bj1020774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dawes J., Foster M. A. Vitamin B 12 and methionine synthesis in Escherichia coli. Biochim Biophys Acta. 1971 Jun 22;237(3):455–464. doi: 10.1016/0304-4165(71)90263-7. [DOI] [PubMed] [Google Scholar]
  8. FOSTER M. A., DILWORTH M. J., WOODS D. D. COBALAMIN AND THE SYNTHESIS OF METHIONINE BY ESCHERICHIA COLI. Nature. 1964 Jan 4;201:39–42. doi: 10.1038/201039a0. [DOI] [PubMed] [Google Scholar]
  9. FOSTER M. A., JONES K. M., WOODS D. D. The purification and properties of a factor containing vitamin B12 concerned in the synthesis of methionine by Escherichia coli. Biochem J. 1961 Sep;80:519–531. doi: 10.1042/bj0800519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foster M. A., Tejerina G., Guest J. R., Woods D. D. Two enzymic mechanisms for the methylation of homocysteine by extracts of Escherichia coli. Biochem J. 1964 Sep;92(3):476–488. doi: 10.1042/bj0920476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foster M. A., Tejerina G., Guest J. R., Woods D. D. Two enzymic mechanisms for the methylation of homocysteine by extracts of Escherichia coli. Biochem J. 1964 Sep;92(3):476–488. doi: 10.1042/bj0920476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GIBSON F., WOODS D. D. The synthesis of methionine by suspensions of Escherichia coli. Biochem J. 1960 Jan;74:160–172. doi: 10.1042/bj0740160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GUEST J. R., FRIEDMAN S., WOODS D. D., SMITH E. L. A methyl analogue of cobamide coenzyme in relation to methionine synthesis by bacteria. Nature. 1962 Jul 28;195:340–342. doi: 10.1038/195340a0. [DOI] [PubMed] [Google Scholar]
  14. GUEST J. R., HELLEINER C. W., CROSS M. J., WOODS D. D. Cobalamin and the synthesis of methionine by ultrasonic extracts of Escherichia coli. Biochem J. 1960 Aug;76:396–405. doi: 10.1042/bj0760396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guest J. R., Friedman S., Foster M. A., Tejerina G., Woods D. D. Transfer of the methyl group from N5-methyltetrahydrofolates to homocysteine in Escherichia coli. Biochem J. 1964 Sep;92(3):497–504. doi: 10.1042/bj0920497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HAKALA M. T., WELCH A. D. A polyglutamate form of citrovorum factor synthesized by Bacillus subtilis. J Bacteriol. 1957 Jan;73(1):35–41. doi: 10.1128/jb.73.1.35-41.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. JONES K. M., GUEST J. R., WOODS D. D. Folic acid and the synthesis of methionine by extracts of Escherichia coli. Biochem J. 1961 Jun;79:566–574. doi: 10.1042/bj0790566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KISLIUK R. L., WOODS D. D. Interrelationships between folic acid and cobalamin in the synthesis of methionine by extracts of Escherichia coli. Biochem J. 1960 Jun;75:467–477. doi: 10.1042/bj0750467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MCHENRY E. W. Interpretation of nutritional requirements in terms of action programs. Fed Proc. 1961 Mar;20(Suppl 7):9–10. [PubMed] [Google Scholar]
  20. MORNINGSTAR J. F., KISLIUK R. L. INTERRELATIONS BETWEEN TWO PATHWAYS OF METHIONINE BIOSYNTHESIS IN AEROBACTER AEROGENES. J Gen Microbiol. 1965 Apr;39:43–51. doi: 10.1099/00221287-39-1-43. [DOI] [PubMed] [Google Scholar]
  21. Metz J., Zalusky R., Herbert V. Folic acid binding by serum and milk. Am J Clin Nutr. 1968 Apr;21(4):289–297. doi: 10.1093/ajcn/21.4.289. [DOI] [PubMed] [Google Scholar]
  22. PFEFFER M., SHAPIRO S. K. Biosynthesis of methionine from S-adenosylmethionine in Escherichia coli. Biochem Biophys Res Commun. 1962 Nov 27;9:405–409. doi: 10.1016/0006-291x(62)90024-4. [DOI] [PubMed] [Google Scholar]
  23. Ron E. Z., Kohler R. E., Davis B. D. Polysomes extracted from Escherichia coli by freeze-thaw-lysozyme lysis. Science. 1966 Sep 2;153(3740):1119–1120. doi: 10.1126/science.153.3740.1119. [DOI] [PubMed] [Google Scholar]
  24. SHAPIRO S. K. Adenosylmethioninehomocysteine transmethylase. Biochim Biophys Acta. 1958 Aug;29(2):405–409. doi: 10.1016/0006-3002(58)90199-9. [DOI] [PubMed] [Google Scholar]
  25. Stadtman T. C. Vitamin B 12. Science. 1971 Mar 5;171(3974):859–867. doi: 10.1126/science.171.3974.859. [DOI] [PubMed] [Google Scholar]
  26. TAKEYAMA S., HATCH F. T., BUCHANAN J. M. Enzymatic synthesis of the methyl group of methionine. II. Involvement of vitamin B12. J Biol Chem. 1961 Apr;236:1102–1108. [PubMed] [Google Scholar]
  27. Taylor R. T., Weissbach H. Escherichia coli B N5-methyltetrahydrofolate-homocysteine vitamin-B12 transmethylase: formation and photolability of a methylcobalamin enzyme. Arch Biochem Biophys. 1968 Jan;123(1):109–126. doi: 10.1016/0003-9861(68)90109-4. [DOI] [PubMed] [Google Scholar]
  28. VOLCANI B. E., TOOHEY J. I., BARKER H. A. Detection of cobamide coenzymes in microorganisms by the ionophoretic bioautographic method. Arch Biochem Biophys. 1961 Mar;92:381–391. doi: 10.1016/0003-9861(61)90376-9. [DOI] [PubMed] [Google Scholar]
  29. WEISSBACH H., PETERKOFSKY A., REDFIELD B. G., DICKERMAN H. STUDIES ON THE TERMINAL REACTION IN THE BIOSYNTHESIS OF METHIONINE. J Biol Chem. 1963 Oct;238:3318–3324. [PubMed] [Google Scholar]
  30. Whitfield C. D., Steers E. J., Jr, Weissbach H. Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase. J Biol Chem. 1970 Jan 25;245(2):390–401. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES