Abstract
1. ATP sulphurylase was purified up to 1000-fold from spinach leaf tissue. Activity was measured by sulphate-dependent [32P]PPi–ATP exchange. The enzyme was separated from Mg2+-requiring alkaline pyrophosphatase (which interferes with the PPi–ATP-exchange assay) and from other PPi–ATP-exchange activities. No ADP sulphurylase activity was detected. 2. Sulphate was the only form of inorganic sulphur that catalysed PPi–ATP exchange; Km (sulphate) was 3.1mm, Km (ATP) was 0.35mm and the pH optimum was 7.5–9.0. The enzyme was insensitive to thiol-group reagents and required either Mg2+ or Co2+ for activity. 3. The enzyme catalysed [32P]PPi–dATP exchange; Km (dATP) was 0.84mm and V (dATP) was 30% of V (ATP). Competition between ATP and dATP was demonstrated. 4. Selenate catalysed [32P]PPi–ATP exchange and competed with sulphate; Km (selenate) was 1.0mm and V (selenate) was 30% of V (sulphate). No AMP was formed with selenate as substrate. Molybdate did not catalyse PPi–ATP exchange, but AMP was formed. 5. Synthesis of adenosine 5′-[35S]sulphatophosphate was demonstrated by coupling purified ATP sulphurylase and Mg2+-dependent alkaline pyrophosphatase (also prepared from spinach) with [35S]sulphate and ATP as substrates; adenosine 5′-sulphatophosphate was not synthesized in the absence of pyrophosphatase. Some parameters of the coupled system are reported.
Full text
PDF![237](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/de2fa98c40b3/biochemj00634-0237.png)
![238](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/2752c59c3985/biochemj00634-0238.png)
![239](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/b3a51661e56e/biochemj00634-0239.png)
![240](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/a4ff95c328a1/biochemj00634-0240.png)
![241](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/4ee3dee4a7c3/biochemj00634-0241.png)
![242](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/f2115987e933/biochemj00634-0242.png)
![243](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/7cd14c45d650/biochemj00634-0243.png)
![244](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/9b25df954e85/biochemj00634-0244.png)
![245](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/0789849793c1/biochemj00634-0245.png)
![246](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/a4e974f1da6b/biochemj00634-0246.png)
![247](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/1178578/c9032e43c9ac/biochemj00634-0247.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams C. A., Johnson R. E. ATP Sulfurylase Activity in the Soybean [Glycine max (L.) Merr.]. Plant Physiol. 1968 Dec;43(12):2041–2044. doi: 10.1104/pp.43.12.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams C. A., Rinne R. W. Influence of age and sulfur metabolism on ATP sulfurylase activity in the soybean and a survey of selected species. Plant Physiol. 1969 Sep;44(9):1241–1246. doi: 10.1104/pp.44.9.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson J. W., Fowden L. Properties and substrate specificities of the phenylalanyl-transfer-ribonucleic acid synthetases of Aesculus species. Biochem J. 1970 Oct;119(4):677–690. doi: 10.1042/bj1190677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balharry G. J., Nicholas D. J. ATP-sulphurylase in spinach leaves. Biochim Biophys Acta. 1970 Dec 16;220(3):513–524. doi: 10.1016/0005-2744(70)90282-2. [DOI] [PubMed] [Google Scholar]
- Balharry G. J., Nicholas D. J. New assay for ATP-sulphurylase using the luciferin-luciferase method. Anal Biochem. 1971 Mar;40(1):1–17. doi: 10.1016/0003-2697(71)90078-9. [DOI] [PubMed] [Google Scholar]
- DAVIE E. W., KONINGSBERGER V. V., LIPMANN F. The isolation of a tryptophan-activating enzyme from pancreas. Arch Biochem Biophys. 1956 Nov;65(1):21–38. doi: 10.1016/0003-9861(56)90173-4. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. The biuret reaction: changes in the ultraviolet absorption spectra and its application to the determination of peptide bonds. Anal Biochem. 1962 Jan;3:40–48. doi: 10.1016/0003-2697(62)90042-8. [DOI] [PubMed] [Google Scholar]
- Ellis P. An act of love ... or an admission of failure? Euthanasia. Nurs Times. 1992 Sep 9;88(37):34–35. [PubMed] [Google Scholar]
- Grunberg-Manago M., Del Campillo-Campbell A., Dondon L., Michelson A. M. ADP-sulfurylase de levure catalysant un échange entre l'orthophosphate et le phosphate terminal des nucleosides diphosphates. Biochim Biophys Acta. 1966 Jul 20;123(1):1–16. [PubMed] [Google Scholar]
- Leggett J. E., Epstein E. Kinetics of Sulfate Absorption by Barley Roots. Plant Physiol. 1956 May;31(3):222–226. doi: 10.1104/pp.31.3.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levi A. S., Wolf G. Purification and properties of the enzyme ATP-sulfurylase and its relation to vitamin A. Biochim Biophys Acta. 1969 Apr 22;178(2):262–282. doi: 10.1016/0005-2744(69)90395-7. [DOI] [PubMed] [Google Scholar]
- MARCUS A. Amino acid dependent exchange between pyrophosphate and adenosine triphosphate in spinach preparations. J Biol Chem. 1959 May;234(5):1238–1240. [PubMed] [Google Scholar]
- MILLERD A., BONNER J. Acetate activation and acetoacetate formation in plant systems. Arch Biochem Biophys. 1954 Apr;49(2):343–355. doi: 10.1016/0003-9861(54)90204-0. [DOI] [PubMed] [Google Scholar]
- NAGANNA B., VENUGOPAL B., SRIPATHI C. E. Occurrence of alkaline pyrophosphatase in vegetable tissues. Biochem J. 1955 Jun;60(2):224–225. doi: 10.1042/bj0600224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panikkar K. R., Bachhawat B. K. Purification and properties of ATP-sulphate adenylyltransferase from liver. Biochim Biophys Acta. 1968 Mar 25;151(3):725–727. doi: 10.1016/0005-2744(68)90032-6. [DOI] [PubMed] [Google Scholar]
- Peterson P. J., Fowden L. Purification, properties and comparative specificities of the enzyme prolyl-transfer ribonucleic acid synthetase from Phaseolus aureus and Polygonatum multiflorum. Biochem J. 1965 Oct;97(1):112–124. doi: 10.1042/bj0970112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pocklington T., Jeffery J. Competition of two substrates for a single enzyme. A simple kinetic theorem exemplified by a hydroxy steroid dehydrogenase reaction. Biochem J. 1969 Apr;112(3):331–334. doi: 10.1042/bj1120331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBBINS P. W., LIPMANN F. Enzymatic synthesis of adenosine-5'-phosphosulfate. J Biol Chem. 1958 Sep;233(3):686–690. [PubMed] [Google Scholar]
- ROBBINS P. W., LIPMANN F. Separation of the two enzymatic phases in active sulfate synthesis. J Biol Chem. 1958 Sep;233(3):681–685. [PubMed] [Google Scholar]
- Shaw W. H., Anderson J. W. Assay of adenosine 5-triphosphate sulfurylase by pyrophosphate exchange. Plant Physiol. 1971 Jan;47(1):114–118. doi: 10.1104/pp.47.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILSON L. G., BANDURSKI R. S. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem. 1958 Oct;233(4):975–981. [PubMed] [Google Scholar]
- el-Badry A. M., Bassham J. A. Chloroplast inorganic pyrophosphatase. Biochim Biophys Acta. 1970 Mar 3;197(2):308–316. doi: 10.1016/0005-2728(70)90042-3. [DOI] [PubMed] [Google Scholar]