Abstract
1. An artificial membrane system was formed by spreading at air/water and oil/water interfaces, by using phosphatidylcholine and the glycoprotein fetuin (mol.wt. 48400). 2. The plot of increase of interfacial pressure against amount of protein added beneath a monomolecular film of phosphatidylcholine showed two discontinuities, corresponding to the completion of two distinct layers of protein: (a) largely denatured and closely associated with the polar head groups of phosphatidylcholine, possibly with penetration of non-polar protein groups between the phosphatidylcholine molecules and (b) an additional adsorbed layer of substantially native fetuin in either a close-packed or open-lattice array. A more compactly organized membrane was apparently formed at pH7.4 with 1mm-Mg2+ in the aqueous phase than without Mg2+; at 15mm-Mg2+, more random adsorption of protein appeared to take place. Qualitatively similar results were obtained at pH5.1 with 1mm-Mg2+. Closer initial packing of the phosphatidylcholine layer decreased both the magnitude of the interfacial pressure change and the amounts of protein bound in the two layers. 3. The amount of N-acetylneuraminic acid released by neuraminidase (EC 3.2.1.18) in the subphase was measured at pH5.1; a mean distribution of 9.7×1013 residues/cm2 was calculated for the completed second protein layer.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON R. M. THE ACTION OF NEURAMINIDASE FROM CLOSTRIDIUM PERFRINGENS ON GANGLIOSIDES. J Neurochem. 1963 Jul;10:503–512. doi: 10.1111/j.1471-4159.1963.tb09853.x. [DOI] [PubMed] [Google Scholar]
- Blough H. A. Viral neuraminidase: a cytochemical binding method using a glycoprotein coupled to ferritin. Virology. 1967 Mar;31(3):514–522. doi: 10.1016/0042-6822(67)90233-4. [DOI] [PubMed] [Google Scholar]
- CAIRNS H. J., FAZEKAS DE ST. GROTH S. The number of allantoic cells in the chick embryo. J Immunol. 1957 Mar;78(3):191–200. [PubMed] [Google Scholar]
- Camejo G., Colacicco G., Rapport M. M. Lipid monolayers: interactions with the apoprotein of high density plasma lipoprotein. J Lipid Res. 1968 Sep;9(5):562–569. [PubMed] [Google Scholar]
- Cassidy J. T., Jourdian G. W., Roseman S. The sialic acids. VI. Purification and properties of sialidase from Clostridium perfringens. J Biol Chem. 1965 Sep;240(9):3501–3506. [PubMed] [Google Scholar]
- Colacicco G. Applications of monolayer techniques to biological systems: symptoms of specific lipid-protein interactions. J Colloid Interface Sci. 1969 Feb;29(2):345–364. doi: 10.1016/0021-9797(69)90204-5. [DOI] [PubMed] [Google Scholar]
- Craven D. A., Gehrke C. W. Quantitative determination of N-acetylneuraminic acid by gas-liquid chromatography. J Chromatogr. 1968 Oct 22;37(3):414–421. doi: 10.1016/s0021-9673(01)99137-x. [DOI] [PubMed] [Google Scholar]
- DE BERNARD L. Associations moléculaires entre les lipides. II. Lecithine et cholestérol. Bull Soc Chim Biol (Paris) 1958;40(1):161–170. [PubMed] [Google Scholar]
- Diatlovitskaia E. V., Volkova V. I., Bergel'son L. D. Sravenie molekuliarnogo sostava fostatidilétanolaminov i fostatidilkholinov. Biokhimiia. 1967 Nov-Dec;32(6):1227–1233. [PubMed] [Google Scholar]
- HESS H., ROLDE E. FLUOROMETRIC ASSAY OF SIALIC ACID IN BRAIN GANGLIOSIDES. J Biol Chem. 1964 Oct;239:3215–3220. [PubMed] [Google Scholar]
- Khaïat A., Miller I. R. Adsorption of ribonuclease at the air-water interface and on phospholipid monolayers. Biochim Biophys Acta. 1969 Jul 15;183(2):309–319. doi: 10.1016/0005-2736(69)90087-x. [DOI] [PubMed] [Google Scholar]
- Morgan C., Rose H. M. Structure and development of viruses as observed in the electron microscope. 8. Entry of influenza virus. J Virol. 1968 Sep;2(9):925–936. doi: 10.1128/jvi.2.9.925-936.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshiro Y., Eylar E. H. Physical and chemical studies on glycoproteins. 3. The microheterogeneity of fetuin, a fetal calf serum glycoprotein. Arch Biochem Biophys. 1968 Sep 20;127(1):476–489. doi: 10.1016/0003-9861(68)90252-x. [DOI] [PubMed] [Google Scholar]
- Oshiro Y., Eylar E. H. Physical and chemical studies on glycoproteins. IV. The influence of sialic acid on the conformation of fetuin. Arch Biochem Biophys. 1969 Mar;130(1):227–234. doi: 10.1016/0003-9861(69)90028-9. [DOI] [PubMed] [Google Scholar]
- Quinn P. J., Dawson R. M. The interaction of cytochrome c with monolayers of phosphatidylethanolamine. Biochem J. 1969 Aug;113(5):791–803. doi: 10.1042/bj1130791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPIRO M. J., SPIRO R. G. Composition of the peptide portion of fetuin. J Biol Chem. 1962 May;237:1507–1510. [PubMed] [Google Scholar]
- SPIRO R. G. Studies on fetuin, a glycoprotein of fetal serum. II. Nature of the carbohydrate units. J Biol Chem. 1962 Feb;237:382–388. [PubMed] [Google Scholar]
- Shah D. O., Schulman J. H. The ionic structure of lecithin monolayers. J Lipid Res. 1967 May;8(3):227–233. [PubMed] [Google Scholar]
- Spiro R. G. Studies on fetuin, a glycoprotein of fetal serum. I. Isolation, chemical composition, and physiochemical properties. J Biol Chem. 1960 Oct;235(10):2860–2869. [PubMed] [Google Scholar]