Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Nov;120(1):125–132. doi: 10.1042/bj1200125

Synthesis of ribonucleic acid in purine-deficient Escherichia coli and a comparison with the effects of amino acid starvation

N F Varney 1, Gillian A Thomas 1,*, K Burton 1
PMCID: PMC1179576  PMID: 4924243

Abstract

1. Experiments with rifampicin and stringent strains of Escherichia coli (pro purB rel+) indicate that purine deficiency does not decrease and may considerably increase the potential for RNA synthesis by RNA polymerase molecules that are bound to DNA and have already commenced transcription. 2. DNA–RNA hybridization experiments indicate that purine starvation increases the distribution of bound RNA polymerase molecules between the cistrons for mRNA and those for stable RNA. 3. Synthesis of β-galactosidase mRNA is more dependent on the ability to synthesize guanine nucleotides than on the ability to synthesize adenine nucleotides. 4. Amino acid starvation tends to decrease the potential for RNA synthesis by RNA polymerase molecules bound to DNA. 5. Since this effect differs from that due to purine starvation, amino acid control of RNA synthesis does not appear to operate solely by causing a deficiency of purine nucleotides. 6. The results are discussed in terms of the ability to initiate RNA chains and to extend them under different circumstances.

Full text

PDF
125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony D. D., Goldthwait D. A., Wu C. W. Studies with the ribonucleic acid polymerase. II. Kinetic aspects of initiation and polymerization. Biochemistry. 1969 Jan;8(1):246–256. doi: 10.1021/bi00829a035. [DOI] [PubMed] [Google Scholar]
  2. Anthony D. D., Zeszotek E., Goldthwait D. A. Initiation by the DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1966 Sep;56(3):1026–1033. doi: 10.1073/pnas.56.3.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BOLTON E. T., McCARTHY B. J. A general method for the isolation of RNA complementary to DNA. Proc Natl Acad Sci U S A. 1962 Aug;48:1390–1397. doi: 10.1073/pnas.48.8.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgess R. R., Travers A. A., Dunn J. J., Bautz E. K. Factor stimulating transcription by RNA polymerase. Nature. 1969 Jan 4;221(5175):43–46. doi: 10.1038/221043a0. [DOI] [PubMed] [Google Scholar]
  5. Cashel M., Gallant J. Control of RNA synthesis in Escherichia coli. I. Amino acid dependence of the synthesis of the substrates of RNA polymerase. J Mol Biol. 1968 Jul 14;34(2):317–330. doi: 10.1016/0022-2836(68)90256-8. [DOI] [PubMed] [Google Scholar]
  6. Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edlin G., Stent G. S., Baker R. F., Yanofsky C. Synthesis of a specific messenger RNA during amino acid starvation of Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):257–268. doi: 10.1016/0022-2836(68)90266-0. [DOI] [PubMed] [Google Scholar]
  8. Edlin G., Stent G. S. Nucleoside triphosphate pools and the regulation of RNA synthesis in E. coli. Proc Natl Acad Sci U S A. 1969 Feb;62(2):475–482. doi: 10.1073/pnas.62.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friesen J. D. A study of the relationship between polyribosomes and messenger RNA in Escherichia coli. J Mol Biol. 1968 Mar 14;32(2):183–200. doi: 10.1016/0022-2836(68)90003-x. [DOI] [PubMed] [Google Scholar]
  10. Friesen J. D. Control of messenger RNA synthesis and decay in Escherichia coli. J Mol Biol. 1966 Oct;20(3):559–573. doi: 10.1016/0022-2836(66)90011-8. [DOI] [PubMed] [Google Scholar]
  11. Fry M., Artman M. Deoxyribonucleic acid-ribonucleic acid hybridization. Annealing and quantitative recovery of intact ribosomal ribonucleic acid molecules from hybrids. Biochem J. 1969 Nov;115(2):287–294. doi: 10.1042/bj1150287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gallant J., Harada B. The control of ribonucleic acid synthesis in Escherichia coli. 3. The functional relationship between purine ribonucleoside triphosphate pool sizes and the rate of ribonucleic acid accumulation. J Biol Chem. 1969 Jun 25;244(12):3125–3132. [PubMed] [Google Scholar]
  13. Jorgensen S. E., Buch L. B., Nierlich D. P. Nucleoside triphosphate termini from RNA synthesized in vivo by Escherichia coli. Science. 1969 May 30;164(3883):1067–1070. doi: 10.1126/science.164.3883.1067. [DOI] [PubMed] [Google Scholar]
  14. KEPES A. KINETICS OF INDUCED ENZYME SYNTHESIS. DETERMINATION OF THE MEAN LIFE OF GALACTOSIDASE-SPECIFIC MESSENGER RNA. Biochim Biophys Acta. 1963 Oct 15;76:293–309. [PubMed] [Google Scholar]
  15. Kaempfer R. O., Magasanik B. Mechanism of beta-galactosidase induction in Escherichia coli. J Mol Biol. 1967 Aug 14;27(3):475–494. doi: 10.1016/0022-2836(67)90053-8. [DOI] [PubMed] [Google Scholar]
  16. MIDGLEY J. E. The kinetics of transfer ribonucleic acid synthesis in Escherichia coli. Biochim Biophys Acta. 1963 Mar 26;68:354–364. doi: 10.1016/0006-3002(63)90157-4. [DOI] [PubMed] [Google Scholar]
  17. Midgley J. E. The messenger ribonucleic acid content of Bacillus subtilis 168. Biochem J. 1969 Nov;115(2):171–181. doi: 10.1042/bj1150171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morris D. W., Kjeldgaard N. O. Evidence for the non-co-ordinate regulation of ribonucleic acid synthesis in stringent strains of Escherichia coli. J Mol Biol. 1968 Jan 14;31(1):145–148. doi: 10.1016/0022-2836(68)90064-8. [DOI] [PubMed] [Google Scholar]
  19. Mueller K., Bremer H. Rate of synthesis of messenger ribonucleic acid in Escherichia coli. J Mol Biol. 1968 Dec;38(3):329–353. doi: 10.1016/0022-2836(68)90390-2. [DOI] [PubMed] [Google Scholar]
  20. Neuhoff V., Schill W. B., Sternbach H. Micro-analysis of pure deoxyribonucleic acid-dependent ribonucleic acid polymerase from Escherichia coli. Action of heparin and rifampicin on structure and function. Biochem J. 1970 Apr;117(3):623–631. doi: 10.1042/bj1170623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pigott G. H., Midgley J. E. Characterization of rapidly labelled ribonucleic acid in Escherichia coli by deoxyribonucleic acid-ribonucleic acid hybridization. Biochem J. 1968 Nov;110(2):251–263. doi: 10.1042/bj1100251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. STENT G. S., BRENNER S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Dec 15;47:2005–2014. doi: 10.1073/pnas.47.12.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
  24. Stubbs J. D., Hall B. D. Level of tryptophan messenger RNA in Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):289–302. doi: 10.1016/0022-2836(68)90268-4. [DOI] [PubMed] [Google Scholar]
  25. Thomas G. A., Varney N. F., Burton K. Nucleic acid synthesis and nucleotide pools in purine-deficient Escherichia coli. Biochem J. 1970 Nov;120(1):117–124. doi: 10.1042/bj1200117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tropp B. E., Meade L. C., Thomas P. J. Consequences of expression of the "relaxed" genotype of the RC gene. Lipid synthesis. J Biol Chem. 1970 Feb 25;245(4):855–858. [PubMed] [Google Scholar]
  27. Wu C. W., Goldthwait D. A. Studies of nucleotide binding to the ribonucleic acid polymerase by a fluoresence technique. Biochemistry. 1969 Nov;8(11):4450–4458. doi: 10.1021/bi00839a034. [DOI] [PubMed] [Google Scholar]
  28. Wu C. W., Goldthwait D. A. Studies of nucleotide binding to the ribonucleic acid polymerase by equilibrium dialysis. Biochemistry. 1969 Nov;8(11):4458–4464. doi: 10.1021/bi00839a035. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES