Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Nov;120(2):353–363. doi: 10.1042/bj1200353

Terminal-sequence studies of high-molecular-weight ribonucleic acid. The 3′-termini of rabbit reticulocyte ribosomal ribonucleic acid

John A Hunt 1
PMCID: PMC1179605  PMID: 4321896

Abstract

Sequences of the polynucleotide chains of RNA found in the large and small ribosomal subunits of rabbit reticulocytes have been determined from the 3′-end by use of periodate oxidation and condensation with [3H]isoniazid and by stepwise degradation. By these methods the hexanucleotide sequences have been found as -pGpUpUpUpGpU for the 28S RNA and -pGpUpCpGpCpU for the 6S RNA of the large ribosomal subunit and the octanucleotide sequence -pGpApUpCpApUpUpA for the 18S rRNA of the small ribosomal subunit. These sequences are present in at least 70% of all the RNA molecules and are discussed in relation to the specific cleavage of rRNA from its precursors and the role of multiple cistrons for rRNA in the DNA of higher organisms. The feasibility of using the method for longer sequence determinations is discussed.

Full text

PDF
363

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brownlee G. G., Sanger F., Barrell B. G. Nucleotide sequence of 5S-ribosomal RNA from Escherichia coli. Nature. 1967 Aug 12;215(5102):735–736. doi: 10.1038/215735a0. [DOI] [PubMed] [Google Scholar]
  2. Fellner P., Ehresmann C., Ebel J. P. Nucleotide sequences present within the 16S ribosomal RNA of Escherichia coli. Nature. 1970 Jan 3;225(5227):26–29. doi: 10.1038/225026a0. [DOI] [PubMed] [Google Scholar]
  3. Forget B. G., Jordan B. 5S RNA synthesized by Escherichia coli in presence of chloramphenicol: different 5'-terminal sequences. Science. 1970 Jan 23;167(3917):382–384. doi: 10.1126/science.167.3917.382. [DOI] [PubMed] [Google Scholar]
  4. Forget B. G., Weissman S. M. Nucleotide sequence of KB cell 5S RNA. Science. 1967 Dec 29;158(3809):1695–1699. doi: 10.1126/science.158.3809.1695. [DOI] [PubMed] [Google Scholar]
  5. HUNT J. A. TERMINAL-SEQUENCE STUDIES OF HIGH-MOLECULAR-WEIGHT RIBONUCLEIC. THE REACTION OF PERIODATE-OXIDIZED RIBONUCLEOSIDES , 5'-RIBONUCLEOTIDES AND RIBONUCLEIC ACID WITH ISONIAZID. Biochem J. 1965 May;95:541–551. doi: 10.1042/bj0950541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huez G., Burny A., Marbaix G., Lebleu B. Release of messenger RNA from rabbit reticulocyte polyribosomes at low concentration of divalent cations. Biochim Biophys Acta. 1967;145(3):629–636. doi: 10.1016/0005-2787(67)90122-0. [DOI] [PubMed] [Google Scholar]
  7. Hunt J. A. Continuous-flow monitor system for detection of UV absorbance, 14C, and 3H in effluent of a column chromatogram. Anal Biochem. 1968 May;23(2):289–300. doi: 10.1016/0003-2697(68)90360-6. [DOI] [PubMed] [Google Scholar]
  8. Hunt J. A. Molecular weight and chain length of rabbit reticulocyte rRNA. Nature. 1970 Jun 6;226(5249):950–952. doi: 10.1038/226950a0. [DOI] [PubMed] [Google Scholar]
  9. Hunt J. A. The fractionation of dinucleoside monophosphate and some trinucleoside diphosphate isonicotinoyl hydrazones by column chromatography. Biochem J. 1970 Jan;116(2):199–205. doi: 10.1042/bj1160199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jeanteur P., Amaldi F., Attardi G. Partial sequence analysis of ribosomal RNA from HeLa cells. II. Evidence for sequences of non-ribosmal type in 45 and 32 s ribosomal RNA precursors. J Mol Biol. 1968 May 14;33(3):757–775. doi: 10.1016/0022-2836(68)90318-5. [DOI] [PubMed] [Google Scholar]
  11. Labrie F. Isolation of an RNA with the properties of haemoglobin messenger. Nature. 1969 Mar 29;221(5187):1217–1222. doi: 10.1038/2211217a0. [DOI] [PubMed] [Google Scholar]
  12. Labrie F., Sanger F. 32P-labellingof haemoglobin messenger and other reticulocyte ribonucleic acids with polynucleotide phosphokinase in iro. Biochem J. 1969 Sep;114(2):29P–29P. doi: 10.1042/bj1140029pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  15. Penman S., Vesco C., Weinberg R., Zylber E. The RNA metabolism of nucleoli and mitochondria in mammalian cells. Cold Spring Harb Symp Quant Biol. 1969;34:535–546. doi: 10.1101/sqb.1969.034.01.061. [DOI] [PubMed] [Google Scholar]
  16. Perry R. P. The nucleolus and the synthesis of ribosomes. Prog Nucleic Acid Res Mol Biol. 1967;6:219–257. doi: 10.1016/s0079-6603(08)60528-0. [DOI] [PubMed] [Google Scholar]
  17. Petermann M. L., Pavlovec A. The subunits and structural ribonucleic acids of Jensen sarcoma ribosomes. Biochim Biophys Acta. 1966 Feb 21;114(2):264–276. doi: 10.1016/0005-2787(66)90308-x. [DOI] [PubMed] [Google Scholar]
  18. Randerath K., Flood K. M., Randerath E. Analysis of nucleic acid derivatives at the subnanomole level. (V) High resolution mapping of tritium labelled RNA derivatives. FEBS Lett. 1969 Sep;5(1):31–33. doi: 10.1016/0014-5793(69)80285-1. [DOI] [PubMed] [Google Scholar]
  19. Steinschneider A., Fraenkel-Conrat H. Studies of nucleotide sequences in tobacco mosaic virus ribonucleic acid. IV. Use of aniline in stepwise degradation. Biochemistry. 1966 Aug;5(8):2735–2743. doi: 10.1021/bi00872a034. [DOI] [PubMed] [Google Scholar]
  20. Williamson R., Brownlee G. G. 5s ribosomal ribonucleic acid from two mouse cell lines gives "fingerprints" identical with human 5s ribosomal ribonucleicai. Biochem J. 1969 Sep;114(2):29P–30P. doi: 10.1042/bj1140029pb. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES