Abstract
1. A thin-slice preparation was used to study the postsynaptic potentials and the underlying currents of visually identified rat medial septal (MS) neurones under tight-seal voltage- and current-clamp conditions. 2. Upon stimulation of the afferent fibres, all MS neurones exhibited a sequence of excitatory-inhibitory postsynaptic potentials (EPSP-IPSP). Under voltage clamp, with potassium glutamate as internal solution and at negative holding potentials (Vh), this synaptic pattern appeared as an initial inward current followed by a longer lasting outward current. 3. The inward postsynaptic current was completely abolished by 5 microM-6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) whereas the outward current disappeared in the presence of 10 microM-bicuculline. Thus the major excitatory and inhibitory synaptic inputs were identified as being due to activation of quisqualate/kainate glutamatergic and gamma-aminobutyric acid (GABAA) receptors, respectively. 4. At positive Vh a CNQX-resistant component of the excitatory postsynaptic current (EPSC) was revealed. This component was slower than the one mediated by the quisqualate receptor and was abolished by 3-3(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP), indicating that N-methyl-D-aspartate (NMDA) receptors are involved in excitatory synaptic transmission in MS cells. The existence of the two main subtypes (NMDA and non-NMDA) of glutamatergic receptors in MS neurones was also confirmed by the responses of the neurones to bath application of the different agonists (glutamate, quisqualate, kainate and NMDA). 5. The CNQX-sensitive EPSC had a reversal potential near 0 mV. The fast rise time (approximately 0.7 ms) indicates a somatic location of the excitatory synapses. The relaxation kinetics of the fast EPSC were fitted by a single exponential function with a time constant of 1.13 +/- 0.1 ms. This parameter was independent of Vh. Fast EPSCs were blocked by CNQX in a dose-dependent manner (dissociation constant, KD = 0.2 microM). 6. Inhibitory postsynaptic currents (IPSCs) were studied in symmetrical chloride solutions after blockade of the excitatory receptors. The current-voltage relation was linear and reversed at 0 mV. The IPSCs had a fast rise time and their decay was best fitted by the sum of two exponentials with time constant of approximately 20 and 50 ms (Vh = -60 mV). The IPSCs were abolished by bicuculline (KD = 1 microM), a selective antagonist of GABAA receptors. As expected, bath application of GABA produced large whole-cell currents. 7. In many cells, in addition to the usual EPSP-IPSP sequence, failures of either the EPSP or the IPSP were frequently observed during the experimental protocol.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF![261](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/506464afdb9a/jphysiol00437-0274.png)
![262](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/f37ec51603f2/jphysiol00437-0275.png)
![263](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/f329738fb545/jphysiol00437-0276.png)
![264](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/25d9dae7d0ac/jphysiol00437-0277.png)
![265](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/657582761771/jphysiol00437-0278.png)
![266](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/01f254e9cb43/jphysiol00437-0279.png)
![267](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/7c451c5f5c25/jphysiol00437-0280.png)
![268](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/e64c7a58d00d/jphysiol00437-0281.png)
![269](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/2ed9f4d0f6af/jphysiol00437-0282.png)
![270](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/1a7831731f45/jphysiol00437-0283.png)
![271](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/6bb9309ade81/jphysiol00437-0284.png)
![272](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/5fe6b7582896/jphysiol00437-0285.png)
![273](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/0a3f9f31d14b/jphysiol00437-0286.png)
![274](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/0d2a63e80df2/jphysiol00437-0287.png)
![275](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/0674bee7abb7/jphysiol00437-0288.png)
![276](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/1179981/cc92ca12a6fb/jphysiol00437-0289.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez de Toledo G., López-Barneo J. Ionic basis of the differential neuronal activity of guinea-pig septal nucleus studied in vitro. J Physiol. 1988 Feb;396:399–415. doi: 10.1113/jphysiol.1988.sp016969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apostol G., Creutzfeldt O. D. Crosscorrelation between the activity of septal units and hippocampal EEG during arousal. Brain Res. 1974 Feb 15;67(1):65–75. doi: 10.1016/0006-8993(74)90298-4. [DOI] [PubMed] [Google Scholar]
- Armstrong D. M., Bruce G., Hersh L. B., Gage F. H. Development of cholinergic neurons in the septal/diagonal band complex of the rat. Brain Res. 1987 Dec 1;433(2):249–256. doi: 10.1016/0165-3806(87)90028-9. [DOI] [PubMed] [Google Scholar]
- Blake J. F., Brown M. W., Collingridge G. L. CNQX blocks acidic amino acid induced depolarizations and synaptic components mediated by non-NMDA receptors in rat hippocampal slices. Neurosci Lett. 1988 Jun 29;89(2):182–186. doi: 10.1016/0304-3940(88)90378-3. [DOI] [PubMed] [Google Scholar]
- Bland S. K., Bland B. H. Medial septal modulation of hippocampal theta cell discharges. Brain Res. 1986 Jun 4;375(1):102–116. doi: 10.1016/0006-8993(86)90963-7. [DOI] [PubMed] [Google Scholar]
- Collingridge G. L., Gage P. W., Robertson B. Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J Physiol. 1984 Nov;356:551–564. doi: 10.1113/jphysiol.1984.sp015482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cull-Candy S. G., Usowicz M. M. Whole-cell current noise produced by excitatory and inhibitory amino acids in large cerebellar neurones of the rat. J Physiol. 1989 Aug;415:533–553. doi: 10.1113/jphysiol.1989.sp017735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies J., Evans R. H., Herrling P. L., Jones A. W., Olverman H. J., Pook P., Watkins J. C. CPP, a new potent and selective NMDA antagonist. Depression of central neuron responses, affinity for [3H]D-AP5 binding sites on brain membranes and anticonvulsant activity. Brain Res. 1986 Sep 10;382(1):169–173. doi: 10.1016/0006-8993(86)90127-7. [DOI] [PubMed] [Google Scholar]
- Dutar P., Lamour Y., Jobert A. Septohippocampal neurons in the rat: an in vivo intracellular study. Brain Res. 1985 Aug 5;340(1):135–142. doi: 10.1016/0006-8993(85)90782-6. [DOI] [PubMed] [Google Scholar]
- Dutar P., Rascol O., Lamour Y. Rhythmical bursting activity and GABAergic mechanisms in the medial septum of normal and pertussis toxin-pretreated rats. Exp Brain Res. 1989;77(2):374–380. doi: 10.1007/BF00274994. [DOI] [PubMed] [Google Scholar]
- Edwards F. A., Konnerth A., Sakmann B. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J Physiol. 1990 Nov;430:213–249. doi: 10.1113/jphysiol.1990.sp018289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards F. A., Konnerth A., Sakmann B., Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989 Sep;414(5):600–612. doi: 10.1007/BF00580998. [DOI] [PubMed] [Google Scholar]
- Finkel A. S., Redman S. J. The synaptic current evoked in cat spinal motoneurones by impulses in single group 1a axons. J Physiol. 1983 Sep;342:615–632. doi: 10.1113/jphysiol.1983.sp014872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN J. D., ARDUINI A. A. Hippocampal electrical activity in arousal. J Neurophysiol. 1954 Nov;17(6):533–557. doi: 10.1152/jn.1954.17.6.533. [DOI] [PubMed] [Google Scholar]
- Gallagher J. P., Hasuo H. Excitatory amino acid-receptor-mediated EPSPs in rat dorsolateral septal nucleus neurones in vitro. J Physiol. 1989 Nov;418:353–365. doi: 10.1113/jphysiol.1989.sp017845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray J. A., McNaughton N. Comparison between the behavioural effects of septal and hippocampal lesions: a review. Neurosci Biobehav Rev. 1983 Summer;7(2):119–188. doi: 10.1016/0149-7634(83)90014-3. [DOI] [PubMed] [Google Scholar]
- Hestrin S., Nicoll R. A., Perkel D. J., Sah P. Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J Physiol. 1990 Mar;422:203–225. doi: 10.1113/jphysiol.1990.sp017980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honoré T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., Nielsen F. E. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science. 1988 Aug 5;241(4866):701–703. doi: 10.1126/science.2899909. [DOI] [PubMed] [Google Scholar]
- Johnston D., Brown T. H. Interpretation of voltage-clamp measurements in hippocampal neurons. J Neurophysiol. 1983 Aug;50(2):464–486. doi: 10.1152/jn.1983.50.2.464. [DOI] [PubMed] [Google Scholar]
- Keller B. U., Konnerth A., Yaari Y. Patch clamp analysis of excitatory synaptic currents in granule cells of rat hippocampus. J Physiol. 1991 Apr;435:275–293. doi: 10.1113/jphysiol.1991.sp018510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konnerth A., Keller B. U., Lev-Tov A. Patch clamp analysis of excitatory synapses in mammalian spinal cord slices. Pflugers Arch. 1990 Nov;417(3):285–290. doi: 10.1007/BF00370994. [DOI] [PubMed] [Google Scholar]
- Lamour Y., Dutar P., Jobert A. Septo-hippocampal and other medial septum-diagonal band neurons: electrophysiological and pharmacological properties. Brain Res. 1984 Sep 10;309(2):227–239. doi: 10.1016/0006-8993(84)90588-2. [DOI] [PubMed] [Google Scholar]
- Llano I., Marty A., Armstrong C. M., Konnerth A. Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J Physiol. 1991 Mar;434:183–213. doi: 10.1113/jphysiol.1991.sp018465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer M. L., Westbrook G. L., Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984 May 17;309(5965):261–263. doi: 10.1038/309261a0. [DOI] [PubMed] [Google Scholar]
- Mayer M. L., Westbrook G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. 1987;28(3):197–276. doi: 10.1016/0301-0082(87)90011-6. [DOI] [PubMed] [Google Scholar]
- McLennan H., Miller J. J. Gamma-aminobutyric acid and inhibition in the septal nuclei of the rat. J Physiol. 1974 Mar;237(3):625–633. doi: 10.1113/jphysiol.1974.sp010501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLennan H., Miller J. J. The hippocampal control of neuronal discharges in the septum of the rat. J Physiol. 1974 Mar;237(3):607–624. doi: 10.1113/jphysiol.1974.sp010500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
- Onténiente B., Geffard M., Campistron G., Calas A. An ultrastructural study of GABA-immunoreactive neurons and terminals in the septum of the rat. J Neurosci. 1987 Jan;7(1):48–54. doi: 10.1523/JNEUROSCI.07-01-00048.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PETSCHE H., STUMPF C., GOGOLAK G. [The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells]. Electroencephalogr Clin Neurophysiol. 1962 Apr;14:202–211. doi: 10.1016/0013-4694(62)90030-5. [DOI] [PubMed] [Google Scholar]
- Sah P., Hestrin S., Nicoll R. A. Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J Physiol. 1990 Nov;430:605–616. doi: 10.1113/jphysiol.1990.sp018310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarter M., Schneider H. H., Stephens D. N. Treatment strategies for senile dementia: antagonist beta-carbolines. Trends Neurosci. 1988 Jan;11(1):13–17. doi: 10.1016/0166-2236(88)90042-2. [DOI] [PubMed] [Google Scholar]
- Segal M. Properties of rat medial septal neurones recorded in vitro. J Physiol. 1986 Oct;379:309–330. doi: 10.1113/jphysiol.1986.sp016255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart M., Fox S. E. Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci. 1990 May;13(5):163–168. doi: 10.1016/0166-2236(90)90040-h. [DOI] [PubMed] [Google Scholar]
- Trussell L. O., Fischbach G. D. Glutamate receptor desensitization and its role in synaptic transmission. Neuron. 1989 Aug;3(2):209–218. doi: 10.1016/0896-6273(89)90034-2. [DOI] [PubMed] [Google Scholar]
- Verdoorn T. A., Draguhn A., Ymer S., Seeburg P. H., Sakmann B. Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron. 1990 Jun;4(6):919–928. doi: 10.1016/0896-6273(90)90145-6. [DOI] [PubMed] [Google Scholar]
- Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., Delon M. R. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982 Mar 5;215(4537):1237–1239. doi: 10.1126/science.7058341. [DOI] [PubMed] [Google Scholar]