Abstract
1. The changes in ciliary beat frequency (CBF) of human nasal respiratory epithelial cells were measured in vitro with a photometric technique following exposure to either 4-bromo-calcium ionophore A23187 (4-Br-A23187) or trifluoperazine (TFP), an inhibitor of calmodulin-sensitive calcium-dependent protein kinases. Changes in intracellular free calcium concentrations in response to 4-Br-A23187 were studied using a fluorescent dye (Fura-2). 2. Addition of 10(-5) M-4-Br-A23187 caused a time-dependent (P less than 0.01) rise in CBF. The increment in CBF was statistically significant 10 min after challenge (+10%; P less than 0.01) and was sustained for at least 1 h, with maximal stimulation after 40 min (+ 18%; P less than 0.01). 3. Exposure to 10(-5) M-4-Br-A23187 caused an immediate increase in intracellular free calcium concentration, which preceded the rise in CBF. 4. TFP (10(-4) M) caused a reduction of baseline CBF (-10%; P less than 0.01) and prevented the expected rise when the cells were subsequently exposed to 10(-5) M-4-Br-A23187. 5. We conclude that: (1) calcium ionophore stimulates the CBF of human respiratory cells; (2) this effect is mediated through a calmodulin-sensitive system, since it is abolished in the presence of TFP; (3) the same pathway appears to control the basal CBF of these cells, since TFP also decreases CBF.
Full text
PDF![103](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/55c4599a98b8/jphysiol00443-0110.png)
![104](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/a7913386191b/jphysiol00443-0111.png)
![105](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/fcec20496057/jphysiol00443-0112.png)
![106](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/cdba762bc031/jphysiol00443-0113.png)
![107](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/be19fe7449d8/jphysiol00443-0114.png)
![108](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/3f6f99661a46/jphysiol00443-0115.png)
![109](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/4d54073850de/jphysiol00443-0116.png)
![110](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/ac1d5fd73500/jphysiol00443-0117.png)
![111](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/fc7d36944e60/jphysiol00443-0118.png)
![112](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/b5efdbfca516/jphysiol00443-0119.png)
![113](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/1180101/39b5f5cb40f9/jphysiol00443-0120.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almers W., Neher E. The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett. 1985 Nov 11;192(1):13–18. doi: 10.1016/0014-5793(85)80033-8. [DOI] [PubMed] [Google Scholar]
- Babcock D. F., First N. L., Lardy H. A. Action of ionophore A23187 at the cellular level. Separation of effects at the plasma and mitochondrial membranes. J Biol Chem. 1976 Jul 10;251(13):3881–3886. [PubMed] [Google Scholar]
- Colbran R. J., Schworer C. M., Hashimoto Y., Fong Y. L., Rich D. P., Smith M. K., Soderling T. R. Calcium/calmodulin-dependent protein kinase II. Biochem J. 1989 Mar 1;258(2):313–325. doi: 10.1042/bj2580313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DALHAMN T., RYLANDER R. Frequency of ciliary beat measured with a photo-sensitive cell. Nature. 1962 Nov 10;196:592–593. doi: 10.1038/196592a0. [DOI] [PubMed] [Google Scholar]
- Deber C. M., Tom-Kun J., Mack E., Grinstein S. Bromo-A23187: a nonfluorescent calcium ionophore for use with fluorescent probes. Anal Biochem. 1985 May 1;146(2):349–352. doi: 10.1016/0003-2697(85)90550-0. [DOI] [PubMed] [Google Scholar]
- Debono M., Molloy R. M., Dorman D. E., Paschal J. W., Babcock D. F., Deber C. M., Pfeiffer D. R. Synthesis and characterization of halogenated derivatives of the ionophore A23187: enhanced calcium ion transport specificity by the 4-bromo derivative. Biochemistry. 1981 Nov 24;20(24):6865–6872. doi: 10.1021/bi00527a019. [DOI] [PubMed] [Google Scholar]
- Di Benedetto G., Gill J., Lopez-Vidriero M. T., Clarke S. W. The effect of cryopreservation on ciliary beat frequency of human respiratory epithelium. Cryobiology. 1989 Aug;26(4):328–332. doi: 10.1016/0011-2240(89)90056-4. [DOI] [PubMed] [Google Scholar]
- Eckert R. Bioelectric control of ciliary activity. Science. 1972 May 5;176(4034):473–481. doi: 10.1126/science.176.4034.473. [DOI] [PubMed] [Google Scholar]
- Girard P. R., Kennedy J. R. Calcium regulation of ciliary activity in rabbit tracheal epithelial explants and outgrowth. Eur J Cell Biol. 1986 Apr;40(2):203–209. [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
- Kakuta Y., Kanno T., Sasaki H., Takishima T. Effect of Ca2+ on the ciliary beat frequency of skinned dog tracheal epithelium. Respir Physiol. 1985 Apr;60(1):9–19. doi: 10.1016/0034-5687(85)90036-2. [DOI] [PubMed] [Google Scholar]
- Kennedy J. R., Duckett K. E. The study of ciliary frequencies with an optical spectrum analysis system. Exp Cell Res. 1981 Sep;135(1):147–156. doi: 10.1016/0014-4827(81)90307-4. [DOI] [PubMed] [Google Scholar]
- Kobayashi K., Tamaoki J., Sakai N., Chiyotani A., Takizawa T. Inhibition of ciliary activity by phorbol esters in rabbit tracheal epithelial cells. Lung. 1989;167(5):277–284. doi: 10.1007/BF02714957. [DOI] [PubMed] [Google Scholar]
- Levin R. M., Weiss B. Mechanism by which psychotropic drugs inhibit adenosine cyclic 3',5'-monophosphate phosphodiesterase of brain. Mol Pharmacol. 1976 Jul;12(4):581–589. [PubMed] [Google Scholar]
- Luk C. K., Dulfano M. J. Effect of pH, viscosity and ionic-strength changes on ciliary beating frequency of human bronchial explants. Clin Sci (Lond) 1983 Apr;64(4):449–451. doi: 10.1042/cs0640449. [DOI] [PubMed] [Google Scholar]
- Murphy E., Cheng E., Yankaskas J., Stutts M. J., Boucher R. C. Cell calcium levels of normal and cystic fibrosis nasal epithelium. Pediatr Res. 1988 Jul;24(1):79–84. doi: 10.1203/00006450-198807000-00019. [DOI] [PubMed] [Google Scholar]
- Prince W. T., Rasmussen H., Berridge M. J. The role of calcium in fly salivary gland secretion analyzed with the ionophore A-23187. Biochim Biophys Acta. 1973 Nov 2;329(1):98–107. doi: 10.1016/0304-4165(73)90012-3. [DOI] [PubMed] [Google Scholar]
- Rasmussen H. The calcium messenger system (1). N Engl J Med. 1986 Apr 24;314(17):1094–1101. doi: 10.1056/NEJM198604243141707. [DOI] [PubMed] [Google Scholar]
- Rasmussen H. The calcium messenger system (2). N Engl J Med. 1986 May 1;314(18):1164–1170. doi: 10.1056/NEJM198605013141807. [DOI] [PubMed] [Google Scholar]
- Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
- Ross S. M., Corrsin S. Results of an analytical model of mucociliary pumping. J Appl Physiol. 1974 Sep;37(3):333–340. doi: 10.1152/jappl.1974.37.3.333. [DOI] [PubMed] [Google Scholar]
- Rutland J., Cole P. J. Non-invasive sampling of nasal cilia for measurement of beat frequency and study of ultrastructure. Lancet. 1980 Sep 13;2(8194):564–565. doi: 10.1016/s0140-6736(80)91995-9. [DOI] [PubMed] [Google Scholar]
- Sanderson M. J., Dirksen E. R. Mechanosensitive and beta-adrenergic control of the ciliary beat frequency of mammalian respiratory tract cells in culture. Am Rev Respir Dis. 1989 Feb;139(2):432–440. doi: 10.1164/ajrccm/139.2.432. [DOI] [PubMed] [Google Scholar]
- Schatzman R. C., Wise B. C., Kuo J. F. Phospholipid-sensitive calcium-dependent protein kinase: inhibition by antipsychotic drugs. Biochem Biophys Res Commun. 1981 Feb 12;98(3):669–676. doi: 10.1016/0006-291x(81)91166-9. [DOI] [PubMed] [Google Scholar]
- Seybold Z. V., Mariassy A. T., Stroh D., Kim C. S., Gazeroglu H., Wanner A. Mucociliary interaction in vitro: effects of physiological and inflammatory stimuli. J Appl Physiol (1985) 1990 Apr;68(4):1421–1426. doi: 10.1152/jappl.1990.68.4.1421. [DOI] [PubMed] [Google Scholar]
- Sleigh M. A., Blake J. R., Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis. 1988 Mar;137(3):726–741. doi: 10.1164/ajrccm/137.3.726. [DOI] [PubMed] [Google Scholar]
- Stolze H., Schulz I. Effect of atropine, ouabain, antimycin A, and A23187 on "trigger Ca2+ pool" in exocrine pancreas. Am J Physiol. 1980 Apr;238(4):G338–G348. doi: 10.1152/ajpgi.1980.238.4.G338. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Means A. R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod. 1983 Feb;28(1):75–104. doi: 10.1095/biolreprod28.1.75. [DOI] [PubMed] [Google Scholar]
- Verdugo P., Raess B. V., Villalon M. The role of calmodulin in the regulation of ciliary movement in mammalian epithelial cilia. J Submicrosc Cytol. 1983 Jan;15(1):95–96. [PubMed] [Google Scholar]
- Wanner A. Clinical aspects of mucociliary transport. Am Rev Respir Dis. 1977 Jul;116(1):73–125. doi: 10.1164/arrd.1977.116.1.73. [DOI] [PubMed] [Google Scholar]