Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Sep;441:325–346. doi: 10.1113/jphysiol.1991.sp018754

Parathyroid hormone selectively inhibits L-type calcium channels in single vascular smooth muscle cells of the rat.

R Wang 1, E Karpinski 1, P K Pang 1
PMCID: PMC1180201  PMID: 1726176

Abstract

1. The active synthetic N-terminal fragment of bovine parathyroid hormone, bPTH-(1-34) at a concentration of 1 microM, decreased the peak amplitude of the long-lasting (L-type) calcium channel current by 37% (n = 14, P less than 0.01) in rat tail artery smooth muscle cells. By contrast, this fragment of parathyroid hormone (PTH) (1 microM) had no effect on the transient (T-type) calcium channel current in the same cell preparation. 2. The inhibitory effect of bPTH-(1-34) on L-channel currents was reversible and could be antagonized by the L-channel agonist, Bay K 8644. In contrast, bPTH-(1-34) inhibited Bay K 8644-induced amplification of L-channel currents. 3. The inhibitory effect of bPTH-(1-34) on L-Channel currents was dose dependent with a threshold concentration of less than 10(-7), and voltage dependent with increased inhibition at more positive holding potentials. However, this effect of bPTH-(1-34) was not dependent on different pulse lengths or interpulse intervals. 4. The kinetics of deactivation of L-channel currents were not changed although the instantaneous amplitude of the L-channel tail current was reduced by bPTH-(1-34). 5. Application of bPTH-(1-34) antagonists (10(-6) M-bPTH-(3-34) and 10(-5) M-bPTH-(7-34] did not result in any significant change in the magnitude of L-channel currents (n = 15 and n = 7, respectively). 6. Pre-incubation of cells with bPTH-(3-34) for more than 15 min abolished the inhibitory effect of bPTH-(1-34) on L-channel currents. 7. The present study provides direct evidence to demonstrate the PTH, an endogenous circulating hormone, is a selective inhibitor of L-channel currents in vascular smooth muscle cells.

Full text

PDF
332

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Taylor S. R. Interaction of barium ions with potassium channels in squid giant axons. Biophys J. 1980 Jun;30(3):473–488. doi: 10.1016/S0006-3495(80)85108-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong D., Eckert R. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2518–2522. doi: 10.1073/pnas.84.8.2518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bacskai B. J., Friedman P. A. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature. 1990 Sep 27;347(6291):388–391. doi: 10.1038/347388a0. [DOI] [PubMed] [Google Scholar]
  4. Bean B. P. Classes of calcium channels in vertebrate cells. Annu Rev Physiol. 1989;51:367–384. doi: 10.1146/annurev.ph.51.030189.002055. [DOI] [PubMed] [Google Scholar]
  5. Bean B. P., Sturek M., Puga A., Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ Res. 1986 Aug;59(2):229–235. doi: 10.1161/01.res.59.2.229. [DOI] [PubMed] [Google Scholar]
  6. Benham C. D., Bolton T. B., Lang R. J., Takewaki T. The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ -channels in arterial and intestinal smooth muscle cell membranes. Pflugers Arch. 1985 Feb;403(2):120–127. doi: 10.1007/BF00584088. [DOI] [PubMed] [Google Scholar]
  7. Benham C. D., Tsien R. W. Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery. J Physiol. 1988 Oct;404:767–784. doi: 10.1113/jphysiol.1988.sp017318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carnes D. L., Anast C. S., Forte L. R. Renal parathyroid hormone-dependent adenylate cyclase activity after repletion of vitamin D-deficient rats with vitamin D-2. Biochim Biophys Acta. 1980 May 22;629(3):546–552. doi: 10.1016/0304-4165(80)90160-9. [DOI] [PubMed] [Google Scholar]
  9. Dunlap K., Fischbach G. D. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol. 1981 Aug;317:519–535. doi: 10.1113/jphysiol.1981.sp013841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eckert R., Ewald D. Calcium tail currents in voltage-clamped intact nerve cell bodies of Aplysia californica. J Physiol. 1983 Dec;345:533–548. doi: 10.1113/jphysiol.1983.sp014995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fischer J. A., Binswanger U., Dietrich F. M. Human parathyroid hormone. Immunological characterization of antibodies against a glandular extract and the synthetic amino-terminal fragments 1-12 and 1-34 and their use in the determination of immunoreactive hormone in human sera. J Clin Invest. 1974 Dec;54(6):1382–1394. doi: 10.1172/JCI107885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frost B. R., Gerke D. C., Frewin D. B. The effects of 2-phenylalanine 8-lysine vasopressin (octapressin) on blood vessels in the rat tail. Aust J Exp Biol Med Sci. 1976 Aug;54(4):403–411. doi: 10.1038/icb.1976.40. [DOI] [PubMed] [Google Scholar]
  13. Goto K., Kasuya Y., Matsuki N., Takuwa Y., Kurihara H., Ishikawa T., Kimura S., Yanagisawa M., Masaki T. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A. 1989 May;86(10):3915–3918. doi: 10.1073/pnas.86.10.3915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greenberg D. A. Calcium channels and calcium channel antagonists. Ann Neurol. 1987 Apr;21(4):317–330. doi: 10.1002/ana.410210402. [DOI] [PubMed] [Google Scholar]
  15. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  16. Helwig J. J., Schleiffer R., Judes C., Gairard A. Distribution of parathyroid hormone-sensitive adenylate cyclase in isolated rabbit renal cortex microvessels and glomeruli. Life Sci. 1984 Dec 24;35(26):2649–2657. doi: 10.1016/0024-3205(84)90034-1. [DOI] [PubMed] [Google Scholar]
  17. Hescheler J., Tang M., Jastorff B., Trautwein W. On the mechanism of histamine induced enhancement of the cardiac Ca2+ current. Pflugers Arch. 1987 Sep;410(1-2):23–29. doi: 10.1007/BF00581891. [DOI] [PubMed] [Google Scholar]
  18. Kamm K. E., Stull J. T. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol. 1989;51:299–313. doi: 10.1146/annurev.ph.51.030189.001503. [DOI] [PubMed] [Google Scholar]
  19. Koch B. D., Blalock J. B., Schonbrunn A. Characterization of the cyclic AMP-independent actions of somatostatin in GH cells. I. An increase in potassium conductance is responsible for both the hyperpolarization and the decrease in intracellular free calcium produced by somatostatin. J Biol Chem. 1988 Jan 5;263(1):216–225. [PubMed] [Google Scholar]
  20. Kondo N., Shibata S., Tenner T. E., Jr, Pang P. K. Electromechanical effects of bPTH-(1-34) on rabbit sinus node cells and guinea pig papillary muscles. J Cardiovasc Pharmacol. 1988 May;11(5):619–625. doi: 10.1097/00005344-198805000-00016. [DOI] [PubMed] [Google Scholar]
  21. Laethem R., Zull J. E. Characterization of the interaction of parathyroid hormone with the mitochondrial ATPase. Arch Biochem Biophys. 1990 Oct;282(1):161–169. doi: 10.1016/0003-9861(90)90100-d. [DOI] [PubMed] [Google Scholar]
  22. Löwik C. W., van Leeuwen J. P., van der Meer J. M., van Zeeland J. K., Scheven B. A., Herrmann-Erlee M. P. A two-receptor model for the action of parathyroid hormone on osteoblasts: a role for intracellular free calcium and cAMP. Cell Calcium. 1985 Aug;6(4):311–326. doi: 10.1016/0143-4160(85)90002-8. [DOI] [PubMed] [Google Scholar]
  23. Marchetti C., Carbone E., Lux H. D. Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch. 1986 Feb;406(2):104–111. doi: 10.1007/BF00586670. [DOI] [PubMed] [Google Scholar]
  24. Mollard P., Vacher P., Rogawski M. A., Dufy B. Vasopressin enhances a calcium current in human ACTH-secreting pituitary adenoma cells. FASEB J. 1988 Oct;2(13):2907–2912. doi: 10.1096/fasebj.2.13.2844618. [DOI] [PubMed] [Google Scholar]
  25. Nickols G. A., Cline W. H., Jr Parathyroid hormone-induced changes in cyclic nucleotide levels during relaxation of the rabbit [correction of rat] aorta. Life Sci. 1987 Jun 15;40(24):2351–2359. doi: 10.1016/0024-3205(87)90509-1. [DOI] [PubMed] [Google Scholar]
  26. Nickols G. A. Increased cyclic AMP in cultured vascular smooth muscle cells and relaxation of aortic strips by parathyroid hormone. Eur J Pharmacol. 1985 Oct 8;116(1-2):137–144. doi: 10.1016/0014-2999(85)90194-3. [DOI] [PubMed] [Google Scholar]
  27. Nickols G. A., Metz M. A., Cline W. H., Jr Vasodilation of the rat mesenteric vasculature by parathyroid hormone. J Pharmacol Exp Ther. 1986 Feb;236(2):419–423. [PubMed] [Google Scholar]
  28. Ogata N., Yoshii M., Narahashi T. Psychotropic drugs block voltage-gated ion channels in neuroblastoma cells. Brain Res. 1989 Jan 2;476(1):140–144. doi: 10.1016/0006-8993(89)91546-1. [DOI] [PubMed] [Google Scholar]
  29. Ohya Y., Sperelakis N. ATP regulation of the slow calcium channels in vascular smooth muscle cells of guinea pig mesenteric artery. Circ Res. 1989 Jan;64(1):145–154. doi: 10.1161/01.res.64.1.145. [DOI] [PubMed] [Google Scholar]
  30. Pang P. K., Hong B. S., Yen L., Yang M. C. Parathyroid hormone. A specific potent vasodilator. Contrib Nephrol. 1984;41:137–145. [PubMed] [Google Scholar]
  31. Pang P. K., Wang R., Shan J., Karpinski E., Benishin C. G. Specific inhibition of long-lasting, L-type calcium channels by synthetic parathyroid hormone. Proc Natl Acad Sci U S A. 1990 Jan;87(2):623–627. doi: 10.1073/pnas.87.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pang P. K., Yang M. C., Sham J. S. Parathyroid hormone and calcium entry blockade in a vascular tissue. Life Sci. 1988;42(14):1395–1400. doi: 10.1016/0024-3205(88)90169-5. [DOI] [PubMed] [Google Scholar]
  33. Pang P. K., Yang M. C., Tenner T. E., Jr, Kenny A. D., Cooper C. W. Cyclic AMP and the vascular action of parathyroid hormone. Can J Physiol Pharmacol. 1986 Dec;64(12):1543–1547. doi: 10.1139/y86-259. [DOI] [PubMed] [Google Scholar]
  34. Quandt F. N., Narahashi T. Isolation and kinetic analysis of inward currents in neuroblastoma cells. Neuroscience. 1984 Sep;13(1):249–262. doi: 10.1016/0306-4522(84)90275-6. [DOI] [PubMed] [Google Scholar]
  35. Ryu P. D., Gerber G., Murase K., Randic M. Calcitonin gene-related peptide enhances calcium current of rat dorsal root ganglion neurons and spinal excitatory synaptic transmission. Neurosci Lett. 1988 Jul 8;89(3):305–312. doi: 10.1016/0304-3940(88)90544-7. [DOI] [PubMed] [Google Scholar]
  36. Sada H., Kojima M., Sperelakis N. Fast inward current properties of voltage-clamped ventricular cells of embryonic chick heart. Am J Physiol. 1988 Sep;255(3 Pt 2):H540–H553. doi: 10.1152/ajpheart.1988.255.3.H540. [DOI] [PubMed] [Google Scholar]
  37. Suzuki Y., Lederis K., Huang M., LeBlanc F. E., Rorstad O. P. Relaxation of bovine, porcine and human brain arteries by parathyroid hormone. Life Sci. 1983 Dec 19;33(25):2497–2503. doi: 10.1016/0024-3205(83)90158-3. [DOI] [PubMed] [Google Scholar]
  38. Terada K., Kitamura K., Kuriyama H. Blocking actions of Ca2+ antagonists on the Ca2+ channels in the smooth muscle cell membrane of rabbit small intestine. Pflugers Arch. 1987 May;408(6):552–557. doi: 10.1007/BF00581155. [DOI] [PubMed] [Google Scholar]
  39. Tsien R. W., Bean B. P., Hess P., Lansman J. B., Nilius B., Nowycky M. C. Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol. 1986 Jul;18(7):691–710. doi: 10.1016/s0022-2828(86)80941-5. [DOI] [PubMed] [Google Scholar]
  40. Wang R., Karpinski E., Pang P. K. Two types of calcium channels in isolated smooth muscle cells from rat tail artery. Am J Physiol. 1989 May;256(5 Pt 2):H1361–H1368. doi: 10.1152/ajpheart.1989.256.5.H1361. [DOI] [PubMed] [Google Scholar]
  41. Yoshii M., Tsunoo A., Narahashi T. Gating and permeation properties of two types of calcium channels in neuroblastoma cells. Biophys J. 1988 Nov;54(5):885–895. doi: 10.1016/S0006-3495(88)83025-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zeng Y. Y., Benishin C. G., Pang P. K. Guanine nucleotide binding proteins may modulate gating of calcium channels in vascular smooth muscle. I. Studies with fluoride. J Pharmacol Exp Ther. 1989 Jul;250(1):343–351. [PubMed] [Google Scholar]
  43. van Breemen C., Saida K. Cellular mechanisms regulating [Ca2+]i smooth muscle. Annu Rev Physiol. 1989;51:315–329. doi: 10.1146/annurev.ph.51.030189.001531. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES