Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Dec;73(6):3358–3370. doi: 10.1016/S0006-3495(97)78360-7

Basal intracellular free Mg2+ concentration in smooth muscle cells of guinea pig tenia cecum: intracellular calibration of the fluorescent indicator furaptra.

M Tashiro 1, M Konishi 1
PMCID: PMC1181237  PMID: 9414246

Abstract

Longitudinal muscle strips dissected from tenia cecum of guinea pig were loaded with the Mg2+ indicator, furaptra, and the relation between the fluorescent ratio signal (R) and cytoplasmic free Mg2+ concentration ([Mg2+]i) was studied in smooth muscle cells at 25 degrees C. After the application of ionophores (4-bromo-A23187, monensin, and nigericin), a small immediate offset of R (deltaRjump) was followed by a slow change in R (deltaRslow), which reached a steady level within 2-5 h. The deltaRjump was independent of Mg2+ concentration in solution ([Mg2+]o), and was thought to be unrelated to the change in [Mg2+]i. The direction of the deltaRslow depended on [Mg2+]o with a reversal at approximately 1 mM [Mg2+]o. The intracellular calibration curve was constructed from the steady levels of deltaRslow, and the dissociation constant was 5.4 mM. With the intracellular calibration curve and correction for the deltaRjump, basal [Mg2+], was estimated to be 0.98 +/- 0.05 mM (mean +/- SE, n = 12). When the same calibration was applied to A7r5 cells and rat ventricular myocytes, estimates of basal [Mg2+]i of these cells were 0.74 +/- 0.02 mM (n = 33) and 1.13 +/- 0.06 mM (n = 9), respectively. These results suggest that the basal [Mg2+] level is approximately 1 mM at least in some types of smooth muscle cells, as generally found in striated muscles.

Full text

PDF
3358

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker A. J., Brandes R., Schreur J. H., Camacho S. A., Weiner M. W. Protein and acidosis alter calcium-binding and fluorescence spectra of the calcium indicator indo-1. Biophys J. 1994 Oct;67(4):1646–1654. doi: 10.1016/S0006-3495(94)80637-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor S. M., Hollingworth S., Hui C. S., Quinta-Ferreira M. E. Properties of the metallochromic dyes Arsenazo III, Antipyrylazo III and Azo1 in frog skeletal muscle fibres at rest. J Physiol. 1986 Aug;377:89–141. doi: 10.1113/jphysiol.1986.sp016178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blatter L. A. Intracellular free magnesium in frog skeletal muscle studied with a new type of magnesium-selective microelectrode: interactions between magnesium and sodium in the regulation of [Mg]i. Pflugers Arch. 1990 May;416(3):238–246. doi: 10.1007/BF00392059. [DOI] [PubMed] [Google Scholar]
  4. Buri A., McGuigan J. A. Intracellular free magnesium and its regulation, studied in isolated ferret ventricular muscle with ion-selective microelectrodes. Exp Physiol. 1990 Nov;75(6):751–761. doi: 10.1113/expphysiol.1990.sp003457. [DOI] [PubMed] [Google Scholar]
  5. Clarke K., Kashiwaya Y., King M. T., Gates D., Keon C. A., Cross H. R., Radda G. K., Veech R. L. The beta/alpha peak height ratio of ATP. A measure of free [Mg2+] using 31P NMR. J Biol Chem. 1996 Aug 30;271(35):21142–21150. doi: 10.1074/jbc.271.35.21142. [DOI] [PubMed] [Google Scholar]
  6. Deber C. M., Tom-Kun J., Mack E., Grinstein S. Bromo-A23187: a nonfluorescent calcium ionophore for use with fluorescent probes. Anal Biochem. 1985 May 1;146(2):349–352. doi: 10.1016/0003-2697(85)90550-0. [DOI] [PubMed] [Google Scholar]
  7. Flatman P. W. Magnesium transport across cell membranes. J Membr Biol. 1984;80(1):1–14. doi: 10.1007/BF01868686. [DOI] [PubMed] [Google Scholar]
  8. Handy R. D., Gow I. F., Ellis D., Flatman P. W. Na-dependent regulation of intracellular free magnesium concentration in isolated rat ventricular myocytes. J Mol Cell Cardiol. 1996 Aug;28(8):1641–1651. doi: 10.1006/jmcc.1996.0154. [DOI] [PubMed] [Google Scholar]
  9. Harkins A. B., Kurebayashi N., Baylor S. M. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys J. 1993 Aug;65(2):865–881. doi: 10.1016/S0006-3495(93)81112-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hongo K., Konishi M., Kurihara S. Cytoplasmic free Mg2+ in rat ventricular myocytes studied with the fluorescent indicator furaptra. Jpn J Physiol. 1994;44(4):357–378. doi: 10.2170/jjphysiol.44.357. [DOI] [PubMed] [Google Scholar]
  11. Hurley T. W., Ryan M. P., Brinck R. W. Changes of cytosolic Ca2+ interfere with measurements of cytosolic Mg2+ using mag-fura-2. Am J Physiol. 1992 Aug;263(2 Pt 1):C300–C307. doi: 10.1152/ajpcell.1992.263.2.C300. [DOI] [PubMed] [Google Scholar]
  12. Ishijima S., Sonoda T., Tatibana M. Mitogen-induced early increase in cytosolic free Mg2+ concentration in single Swiss 3T3 fibroblasts. Am J Physiol. 1991 Dec;261(6 Pt 1):C1074–C1080. doi: 10.1152/ajpcell.1991.261.6.C1074. [DOI] [PubMed] [Google Scholar]
  13. Itoh T., Kanmura Y., Kuriyama H. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery. J Physiol. 1985 Feb;359:467–484. doi: 10.1113/jphysiol.1985.sp015597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jelicks L. A., Gupta R. K. Intracellular free magnesium and high energy phosphates in the perfused normotensive and spontaneously hypertensive rat heart. A 31P NMR study. Am J Hypertens. 1991 Feb;4(2 Pt 1):131–136. doi: 10.1093/ajh/4.2.131. [DOI] [PubMed] [Google Scholar]
  15. Kirschenlohr H. L., Metcalfe J. C., Morris P. G., Rodrigo G. C., Smith G. A. Ca2+ transient, Mg2+, and pH measurements in the cardiac cycle by 19F NMR. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9017–9021. doi: 10.1073/pnas.85.23.9017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kishimoto T., Ozaki H., Karaki H., Urakawa N., Ishida Y. The inhibitory effect of monensin on high K-induced contraction in guinea-pig taenia coli. Eur J Pharmacol. 1982 Oct 15;84(1-2):25–32. doi: 10.1016/0014-2999(82)90153-4. [DOI] [PubMed] [Google Scholar]
  17. Konishi M., Berlin J. R. Ca transients in cardiac myocytes measured with a low affinity fluorescent indicator, furaptra. Biophys J. 1993 Apr;64(4):1331–1343. doi: 10.1016/S0006-3495(93)81494-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Konishi M., Hollingworth S., Harkins A. B., Baylor S. M. Myoplasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra. J Gen Physiol. 1991 Feb;97(2):271–301. doi: 10.1085/jgp.97.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Konishi M., Olson A., Hollingworth S., Baylor S. M. Myoplasmic binding of fura-2 investigated by steady-state fluorescence and absorbance measurements. Biophys J. 1988 Dec;54(6):1089–1104. doi: 10.1016/S0006-3495(88)83045-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Konishi M., Suda N., Kurihara S. Fluorescence signals from the Mg2+/Ca2+ indicator furaptra in frog skeletal muscle fibers. Biophys J. 1993 Jan;64(1):223–239. doi: 10.1016/S0006-3495(93)81359-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kurebayashi N., Harkins A. B., Baylor S. M. Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Biophys J. 1993 Jun;64(6):1934–1960. doi: 10.1016/S0006-3495(93)81564-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kushmerick M. J., Dillon P. F., Meyer R. A., Brown T. R., Krisanda J. M., Sweeney H. L. 31P NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle. J Biol Chem. 1986 Nov 5;261(31):14420–14429. [PubMed] [Google Scholar]
  23. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  24. Levy L. A., Murphy E., Raju B., London R. E. Measurement of cytosolic free magnesium ion concentration by 19F NMR. Biochemistry. 1988 May 31;27(11):4041–4048. doi: 10.1021/bi00411a021. [DOI] [PubMed] [Google Scholar]
  25. Li Q., Altschuld R. A., Stokes B. T. Quantitation of intracellular free calcium in single adult cardiomyocytes by fura-2 fluorescence microscopy: calibration of fura-2 ratios. Biochem Biophys Res Commun. 1987 Aug 31;147(1):120–126. doi: 10.1016/s0006-291x(87)80095-5. [DOI] [PubMed] [Google Scholar]
  26. London R. E. Methods for measurement of intracellular magnesium: NMR and fluorescence. Annu Rev Physiol. 1991;53:241–258. doi: 10.1146/annurev.ph.53.030191.001325. [DOI] [PubMed] [Google Scholar]
  27. Murphy E., Steenbergen C., Levy L. A., Raju B., London R. E. Cytosolic free magnesium levels in ischemic rat heart. J Biol Chem. 1989 Apr 5;264(10):5622–5627. [PubMed] [Google Scholar]
  28. Nakayama S., Nomura H., Tomita T. Intracellular-free magnesium in the smooth muscle of guinea pig taenia caeci: a concomitant analysis for magnesium and pH upon sodium removal. J Gen Physiol. 1994 May;103(5):833–851. doi: 10.1085/jgp.103.5.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ng L. L., Davies J. E., Ameen M. Intracellular free-magnesium levels in vascular smooth muscle and striated muscle cells of the spontaneously hypertensive rat. Metabolism. 1992 Jul;41(7):772–777. doi: 10.1016/0026-0495(92)90319-6. [DOI] [PubMed] [Google Scholar]
  30. Nishimura H., Matsubara T., Ikoma Y., Nakayama S., Sakamoto N. Effects of prolonged application of isoprenaline on intracellular free magnesium concentration in isolated heart of rat. Br J Pharmacol. 1993 Jun;109(2):443–448. doi: 10.1111/j.1476-5381.1993.tb13589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Raju B., Murphy E., Levy L. A., Hall R. D., London R. E. A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol. 1989 Mar;256(3 Pt 1):C540–C548. doi: 10.1152/ajpcell.1989.256.3.C540. [DOI] [PubMed] [Google Scholar]
  32. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  33. Silverman H. S., Di Lisa F., Hui R. C., Miyata H., Sollott S. J., Hanford R. G., Lakatta E. G., Stern M. D. Regulation of intracellular free Mg2+ and contraction in single adult mammalian cardiac myocytes. Am J Physiol. 1994 Jan;266(1 Pt 1):C222–C233. doi: 10.1152/ajpcell.1994.266.1.C222. [DOI] [PubMed] [Google Scholar]
  34. Somlyo A. P., Somlyo A. V., Shuman H., Endo M. Calcium and monovalent ions in smooth muscle. Fed Proc. 1982 Oct;41(12):2883–2890. [PubMed] [Google Scholar]
  35. Tashiro M., Konishi M. Na+ gradient-dependent Mg2+ transport in smooth muscle cells of guinea pig tenia cecum. Biophys J. 1997 Dec;73(6):3371–3384. doi: 10.1016/S0006-3495(97)78361-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Westerblad H., Allen D. G. Intracellular calibration of the calcium indicator indo-1 in isolated fibers of Xenopus muscle. Biophys J. 1996 Aug;71(2):908–917. doi: 10.1016/S0006-3495(96)79294-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Westerblad H., Allen D. G. Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol. 1992;453:413–434. doi: 10.1113/jphysiol.1992.sp019236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Williams D. A., Fay F. S. Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium. 1990 Feb-Mar;11(2-3):75–83. doi: 10.1016/0143-4160(90)90061-x. [DOI] [PubMed] [Google Scholar]
  39. Yamamoto H., van Breemen C. Ca2+ compartments in saponin-skinned cultured vascular smooth muscle cells. J Gen Physiol. 1986 Mar;87(3):369–389. doi: 10.1085/jgp.87.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhang A., Cheng T. P., Altura B. T., Altura B. M. Extracellular magnesium regulates intracellular free Mg2+ in vascular smooth muscle cells. Pflugers Arch. 1992 Jul;421(4):391–393. doi: 10.1007/BF00374229. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES