Abstract
1. Cat carotid bodies were incubated with the precursor [3H]tyrosine to label the catecholamine deposits and then mounted in a superfusion chamber which allowed simultaneous collection of the released [3H]dopamine (DA) and recording of action potentials from the carotid sinus nerve. 2. Low pH (7.2-6.6) superfusion of the carotid bodies for periods of 10 min produced a parallel increase in the release of [3H]DA and chemoreceptor discharge. 3. Carotid sinus nerve denervation of the carotid body 12-15 days prior to the experiments did not modify the release of [3H]DA elicited by low pH. 4. Superfusion of the carotid bodies with Ca(2+)-free, high-Mg2+ (1.6 mM) media reduced basal release of [3H]DA and chemoreceptor discharge by about 30%. Release evoked by low pH was reduced by 82%. Peak and average chemoreceptor discharge recorded in response to low pH were reduced by 28%. 5. Solutions containing weak acids (sodium acetate, 10 mM), adjusted at pH 7.4, elicited release of [3H]DA and increased chemoreceptor discharge. 6. With HCO3-CO2-buffered superfusion media, a reduction of bicarbonate to 5.6 mM (pH 6.8), an increase in CO2 to 20% (pH 6.8), or a simultaneous increase in CO2 to 20% and bicarbonate to 90 mM (pH 7.4), resulted in all cases in a corresponding increase in [3H]DA release and chemoreceptor discharge. The most effective stimulus was 20% CO2-pH 6.8 and the least effective 5% CO2-5.6 mM-HCO3-pH 6.8. 7. Inhibition of carbonic anhydrase with acetazolamide while perfusing the carotid bodies with a 20% CO2-equilibrated (pH 7.4) solution resulted in comparable reductions in the release of [3H]DA and chemoreceptor discharge. 8. It is concluded that the effective acidic stimulus at the carotid body chemoreceptors is an increase in hydrogen ion concentration in type I cells. It is also concluded that DA plays a critical role in the genesis of carotid sinus nerve discharges.
Full text
PDF![519](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/b3c9c6a0a987/jphysiol00451-0509.png)
![520](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/05dd5182e9d9/jphysiol00451-0510.png)
![521](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/34ffcbbd31e1/jphysiol00451-0511.png)
![522](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/31ba6cd4197c/jphysiol00451-0512.png)
![523](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/e4f404c521be/jphysiol00451-0513.png)
![524](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/f5588fd27884/jphysiol00451-0514.png)
![525](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/e7b488f24a79/jphysiol00451-0515.png)
![526](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/314e34126edd/jphysiol00451-0516.png)
![527](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/c8c4611e112b/jphysiol00451-0517.png)
![528](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/5011752ffbb1/jphysiol00451-0518.png)
![529](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/0defd7c3998a/jphysiol00451-0519.png)
![530](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/af71f2ca334a/jphysiol00451-0520.png)
![531](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a3/1181386/d146029b6a47/jphysiol00451-0521.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aickin C. C., Thomas R. C. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J Physiol. 1977 Dec;273(1):295–316. doi: 10.1113/jphysiol.1977.sp012095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almaraz L., Gonzalez C., Obeso A. Effects of high potassium on the release of [3H]dopamine from the cat carotid body in vitro. J Physiol. 1986 Oct;379:293–307. doi: 10.1113/jphysiol.1986.sp016254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biscoe T. J., Duchen M. R. Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide. J Physiol. 1989 Jun;413:447–468. doi: 10.1113/jphysiol.1989.sp017663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fidone S., Gonzalez C., Yoshizaki K. Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J Physiol. 1982 Dec;333:93–110. doi: 10.1113/jphysiol.1982.sp014441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzgerald R. S., Garger P., Hauer M. C., Raff H., Fechter L. Effect of hypoxia and hypercapnia on catecholamine content in cat carotid body. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1408–1413. doi: 10.1152/jappl.1983.54.5.1408. [DOI] [PubMed] [Google Scholar]
- Hanbauer I., Hellstrom S. The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia. J Physiol. 1978 Sep;282:21–34. doi: 10.1113/jphysiol.1978.sp012445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato E., Narahashi T. Characteristics of the electrical response to dopamine in neuroblastoma cells. J Physiol. 1982 Dec;333:213–226. doi: 10.1113/jphysiol.1982.sp014450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keynes R. D., Rojas E., Taylor R. E., Vergara J. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J Physiol. 1973 Mar;229(2):409–455. doi: 10.1113/jphysiol.1973.sp010146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krishtal O. A., Pidoplichko V. I. Receptor for protons in the membrane of sensory neurons. Brain Res. 1981 Jun 9;214(1):150–154. doi: 10.1016/0006-8993(81)90446-7. [DOI] [PubMed] [Google Scholar]
- López-Barneo J., López-López J. R., Ureña J., González C. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science. 1988 Jul 29;241(4865):580–582. doi: 10.1126/science.2456613. [DOI] [PubMed] [Google Scholar]
- Obeso A., Almaraz L., Gonzalez C. Effects of 2-deoxy-D-glucose on in vitro cat carotid body. Brain Res. 1986 Apr 16;371(1):25–36. doi: 10.1016/0006-8993(86)90806-1. [DOI] [PubMed] [Google Scholar]
- Obeso A., Almaraz L., Gonzalez C. Effects of cyanide and uncouplers on chemoreceptor activity and ATP content of the cat carotid body. Brain Res. 1989 Mar 6;481(2):250–257. doi: 10.1016/0006-8993(89)90801-9. [DOI] [PubMed] [Google Scholar]
- Rigual R., Gonzalez E., Fidone S., Gonzalez C. Effects of low pH on synthesis and release of catecholamines in the cat carotid body in vitro. Brain Res. 1984 Aug 20;309(1):178–181. doi: 10.1016/0006-8993(84)91026-6. [DOI] [PubMed] [Google Scholar]
- Rigual R., Gonzalez E., Gonzalez C., Fidone S. Synthesis and release of catecholamines by the cat carotid body in vitro: effects of hypoxic stimulation. Brain Res. 1986 May 21;374(1):101–109. doi: 10.1016/0006-8993(86)90398-7. [DOI] [PubMed] [Google Scholar]
- Rigual R., Iñiguez C., Carreres J., Gonzalez C. Carbonic anhydrase in the carotid body and the carotid sinus nerve. Histochemistry. 1985;82(6):577–580. doi: 10.1007/BF00489979. [DOI] [PubMed] [Google Scholar]
- Rocher A., Obeso A., Gonzalez C., Herreros B. Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells. J Physiol. 1991 Feb;433:533–548. doi: 10.1113/jphysiol.1991.sp018442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Starlinger H., Acker H. The norepinephrine and dopamine content of the cat carotid body in vivo under normoxic and hypoxic conditions. Neurosci Lett. 1986 Feb 14;64(1):65–68. doi: 10.1016/0304-3940(86)90664-6. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol. 1984 Sep;354:3P–22P. doi: 10.1113/jphysiol.1984.sp015397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas R. C. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol. 1976 Mar;255(3):715–735. doi: 10.1113/jphysiol.1976.sp011305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torrance R. W. Convergence of stimuli in arterial chemoreceptors. Adv Exp Med Biol. 1977;78:203–207. doi: 10.1007/978-1-4615-9035-4_16. [DOI] [PubMed] [Google Scholar]
- Van Buskirk R., Dowling J. E. Calcium alters the sensitivity of intact horizontal cells to dopamine antagonists. Proc Natl Acad Sci U S A. 1982 May;79(10):3350–3354. doi: 10.1073/pnas.79.10.3350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weil-Malherbe H. The chemical estimation of catecholamines and their metabolites in body fluids and tissue extracts. Methods Biochem Anal. 1971;(Suppl):119–152. doi: 10.1002/9780470110409.ch5. [DOI] [PubMed] [Google Scholar]