Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Apr;435:439–463. doi: 10.1113/jphysiol.1991.sp018518

Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium.

D P Joseph 1, S S Miller 1
PMCID: PMC1181470  PMID: 1722821

Abstract

1. Intracellular voltage recordings using conventional and double-barrelled chloride-selective microelectrodes have been used to identify several transport mechanisms at the apical and basolateral membranes of the isolated bovine retinal pigment epithelium (RPE)-choroid preparation. Intracellular recordings were obtained from two cell populations, melanotic (pigmented) and amelanotic (non-pigmented). The electrical properties of these two populations are practically identical. For melanotic cells the average apical resting membrane potential (VA) is -61 +/- 2 mV (mean +/- S.E.M., n = 49 cells, thirty-three eyes). For these cells the ratio of apical to basolateral membrane resistance (a) was 0.22 +/- 0.02. The mean transepithelial voltage and resistance were 6 +/- 1 mV and 138 +/- 7 omega cm2, respectively. 2. The apical membrane, which faces the distal retina, contains a Ba(2+)-inhibitable K+ conductance and a ouabain-inhibitable, electrogenic Na(+)-K+ pump. In addition it contains a bumetanide-sensitive mechanism, the putative Na(+)-K(+)-Cl- cotransporter. The basolateral membrane contains a DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid)-inhibitable chloride channel. The relative conductances of the apical and basolateral membranes to K+ and Cl- are TK approximately 0.9 and TCl approximately 0.7, respectively. 3. The ouabain-induced fast phase of apical membrane depolarization (0-30 s) was used to calculate the equivalent resistances of the apical (RA) and basolateral (RB) cell membranes, as well as the paracellular or shunt resistance (RS). They are: 3190 +/- 400, 17920 +/- 2730 and 2550 +/- 200 omega (mean +/- S.E.M., n = 9 tissues), respectively. From these data the equivalent electromotive forces (EMF) at the apical (EA) and basolateral (EB) membranes were also calculated. They are: -69 +/- 5.0 and -24 +/- 5.0 mV, respectively. 4. Intracellular Cl- activity (aiCl) was measured using double-barreled ion-selective microelectrodes. In the steady state aiCl = 61 +/- 4.0 mM and the Nernst potential ECl = -13.5 +/- 1.5 mV (mean +/- S.E.M., n = 4). 5. In the intact eye or in retina, RPE-choroid preparations it has been shown that the transition between light and dark alters the K+ concentration in the extracellular (or subretinal) space between the photoreceptors and the apical membrane of the RPE. These light-induced changes in subretinal [K+]o were qualitatively simulated in vitro by altering apical K+ between 5 and 2 mM. This produced a sequence of voltage changes at the apical and basolateral membranes that had three operationally distinct phases. Phase 1 is generated by the combination of an apical membrane K+ diffusion potential and inhibition of the electrogenic Na(+)-K+ pump.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
443

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adorante J. S., Miller S. S. Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport. J Gen Physiol. 1990 Dec;96(6):1153–1176. doi: 10.1085/jgp.96.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coles J. A., Tsacopoulos M. A method of making fine double-barrelled potassium-sensitive micro-electrodes for intracellular recording [proceedings]. J Physiol. 1977 Aug;270(1):12P–14P. [PubMed] [Google Scholar]
  3. Davis C. W., Finn A. L. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science. 1982 Apr 30;216(4545):525–527. doi: 10.1126/science.7071599. [DOI] [PubMed] [Google Scholar]
  4. Dikstein S., Maurice D. M. The metabolic basis to the fluid pump in the cornea. J Physiol. 1972 Feb;221(1):29–41. doi: 10.1113/jphysiol.1972.sp009736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eaton D. C., Brodwick M. S. Effects of barium on the potassium conductance of squid axon. J Gen Physiol. 1980 Jun;75(6):727–750. doi: 10.1085/jgp.75.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallemore R. P., Steinberg R. H. Effects of DIDS on the chick retinal pigment epithelium. I. Membrane potentials, apparent resistances, and mechanisms. J Neurosci. 1989 Jun;9(6):1968–1976. doi: 10.1523/JNEUROSCI.09-06-01968.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griff E. R., Shirao Y., Steinberg R. H. Ba2+ unmasks K+ modulation of the Na+-K+ pump in the frog retinal pigment epithelium. J Gen Physiol. 1985 Dec;86(6):853–876. doi: 10.1085/jgp.86.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griff E. R., Steinberg R. H. Changes in apical [K+] produce delayed basal membrane responses of the retinal pigment epithelium in the gecko. J Gen Physiol. 1984 Feb;83(2):193–211. doi: 10.1085/jgp.83.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Halm D. R., Krasny E. J., Jr, Frizzell R. A. Electrophysiology of flounder intestinal mucosa. I. Conductance properties of the cellular and paracellular pathways. J Gen Physiol. 1985 Jun;85(6):843–864. doi: 10.1085/jgp.85.6.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanrahan J. W., Alles W. P., Lewis S. A. Single anion-selective channels in basolateral membrane of a mammalian tight epithelium. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7791–7795. doi: 10.1073/pnas.82.22.7791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hughes B. A., Adorante J. S., Miller S. S., Lin H. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium. J Gen Physiol. 1989 Jul;94(1):125–150. doi: 10.1085/jgp.94.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hughes B. A., Miller S. S., Joseph D. P., Edelman J. L. cAMP stimulates the Na+-K+ pump in frog retinal pigment epithelium. Am J Physiol. 1988 Jan;254(1 Pt 1):C84–C98. doi: 10.1152/ajpcell.1988.254.1.C84. [DOI] [PubMed] [Google Scholar]
  13. Hughes B. A., Miller S. S., Machen T. E. Effects of cyclic AMP on fluid absorption and ion transport across frog retinal pigment epithelium. Measurements in the open-circuit state. J Gen Physiol. 1984 Jun;83(6):875–899. doi: 10.1085/jgp.83.6.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Immel J., Steinberg R. H. Spatial buffering of K+ by the retinal pigment epithelium in frog. J Neurosci. 1986 Nov;6(11):3197–3204. doi: 10.1523/JNEUROSCI.06-11-03197.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inoue I. Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives. J Gen Physiol. 1985 Apr;85(4):519–537. doi: 10.1085/jgp.85.4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kennedy B. G. Na(+)-K(4)-Cl- cotransport in cultured cells derived from human retinal pigment epithelium. Am J Physiol. 1990 Jul;259(1 Pt 1):C29–C34. doi: 10.1152/ajpcell.1990.259.1.C29. [DOI] [PubMed] [Google Scholar]
  17. La Cour M. Rheogenic sodium-bicarbonate co-transport across the retinal membrane of the frog retinal pigment epithelium. J Physiol. 1989 Dec;419:539–553. doi: 10.1113/jphysiol.1989.sp017885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lasansky A., De Fisch F. W. Potential, current, and ionic fluxes across the isolated retinal pigment epithelium and choriod. J Gen Physiol. 1966 May;49(5):913–924. doi: 10.1085/jgp.49.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Linsenmeier R. A. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol. 1986 Oct;88(4):521–542. doi: 10.1085/jgp.88.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Linsenmeier R. A., Steinberg R. H. Delayed basal hyperpolarization of cat retinal pigment epithelium and its relation to the fast oscillation of the DC electroretinogram. J Gen Physiol. 1984 Feb;83(2):213–232. doi: 10.1085/jgp.83.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Linsenmeier R. A., Steinberg R. H. Mechanisms of hypoxic effects on the cat DC electroretinogram. Invest Ophthalmol Vis Sci. 1986 Sep;27(9):1385–1394. [PubMed] [Google Scholar]
  22. Matsumura Y., Cohen B., Guggino W. B., Giebisch G. Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J Membr Biol. 1984;79(2):153–161. doi: 10.1007/BF01872119. [DOI] [PubMed] [Google Scholar]
  23. Messner G., Wang W., Paulmichl M., Oberleithner H., Lang F. Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney. Pflugers Arch. 1985 May;404(2):131–137. doi: 10.1007/BF00585408. [DOI] [PubMed] [Google Scholar]
  24. Miller S. S., Edelman J. L. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990 May;424:283–300. doi: 10.1113/jphysiol.1990.sp018067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller S. S., Steinberg R. H. Active transport of ions across frog retinal pigment epithelium. Exp Eye Res. 1977 Sep;25(3):235–248. doi: 10.1016/0014-4835(77)90090-2. [DOI] [PubMed] [Google Scholar]
  26. Miller S. S., Steinberg R. H., Oakley B., 2nd The electrogenic sodium pump of the frog retinal pigment epithelium. J Membr Biol. 1978 Dec 29;44(3-4):259–279. doi: 10.1007/BF01944224. [DOI] [PubMed] [Google Scholar]
  27. Miller S. S., Steinberg R. H. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977 Sep 15;36(4):337–372. doi: 10.1007/BF01868158. [DOI] [PubMed] [Google Scholar]
  28. Miller S. S., Steinberg R. H. Potassium modulation of taurine transport across the frog retinal pigment epithelium. J Gen Physiol. 1979 Aug;74(2):237–259. doi: 10.1085/jgp.74.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller S. S., Steinberg R. H. Potassium transport across the frog retinal pigment epithelium. J Membr Biol. 1982;67(3):199–209. doi: 10.1007/BF01868661. [DOI] [PubMed] [Google Scholar]
  30. Miller S., Farber D. Cyclic AMP modulation of ion transport across frog retinal pigment epithelium. Measurements in the short-circuit state. J Gen Physiol. 1984 Jun;83(6):853–874. doi: 10.1085/jgp.83.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Montrose M., Randles J., Kimmich G. A. SITS-sensitive Cl- conductance pathway in chick intestinal cells. Am J Physiol. 1987 Nov;253(5 Pt 1):C693–C699. doi: 10.1152/ajpcell.1987.253.5.C693. [DOI] [PubMed] [Google Scholar]
  32. Newman E. A. Membrane physiology of retinal glial (Müller) cells. J Neurosci. 1985 Aug;5(8):2225–2239. doi: 10.1523/JNEUROSCI.05-08-02225.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. O'Grady S. M., Palfrey H. C., Field M. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues. Am J Physiol. 1987 Aug;253(2 Pt 1):C177–C192. doi: 10.1152/ajpcell.1987.253.2.C177. [DOI] [PubMed] [Google Scholar]
  34. Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
  35. Oakley B., 2nd, Miller S. S., Steinberg R. H. Effect of intracellular potassium upon the electrogenic pump of frog retinal pigment epithelium. J Membr Biol. 1978 Dec 29;44(3-4):281–307. doi: 10.1007/BF01944225. [DOI] [PubMed] [Google Scholar]
  36. Oakley B., 2nd Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977 Oct;70(4):405–425. doi: 10.1085/jgp.70.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Oakley B., 2nd, Steinberg R. H. Effects of maintained illumination upon [K+]0 in the subretinal space of the frog retina. Vision Res. 1982;22(7):767–773. doi: 10.1016/0042-6989(82)90007-4. [DOI] [PubMed] [Google Scholar]
  38. Ostwald T. J., Steinberg R. H. Localization of frog retinal pigment epithelium Na+-K+ ATPase. Exp Eye Res. 1980 Sep;31(3):351–360. doi: 10.1016/s0014-4835(80)80043-1. [DOI] [PubMed] [Google Scholar]
  39. Pautler E. L., Tengerdy C. Transport of acidic amino acids by the bovine pigment epithelium. Exp Eye Res. 1986 Aug;43(2):207–214. doi: 10.1016/s0014-4835(86)80088-4. [DOI] [PubMed] [Google Scholar]
  40. Shimazaki H., Oakley B., 2nd Reaccumulation of [K+]o in the toad retina during maintained illumination. J Gen Physiol. 1984 Sep;84(3):475–504. doi: 10.1085/jgp.84.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Steinberg R. H., Miller S. S., Stern W. H. Initial observations on the isolated retinal pigment epithelium-choroid of the cat. Invest Ophthalmol Vis Sci. 1978 Jul;17(7):675–678. [PubMed] [Google Scholar]
  42. Steinberg R. H., Oakley B., 2nd, Niemeyer G. Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980 Nov;44(5):897–921. doi: 10.1152/jn.1980.44.5.897. [DOI] [PubMed] [Google Scholar]
  43. Weleber R. G. Fast and slow oscillations of the electro-oculogram in Best's macular dystrophy and retinitis pigmentosa. Arch Ophthalmol. 1989 Apr;107(4):530–537. doi: 10.1001/archopht.1989.01070010544028. [DOI] [PubMed] [Google Scholar]
  44. Winkler B. S., Giblin F. J. Glutathione oxidation in retina: effects on biochemical and electrical activities. Exp Eye Res. 1983 Feb;36(2):287–297. doi: 10.1016/0014-4835(83)90013-1. [DOI] [PubMed] [Google Scholar]
  45. la Cour M., Lund-Andersen H., Zeuthen T. Potassium transport of the frog retinal pigment epithelium: autoregulation of potassium activity in the subretinal space. J Physiol. 1986 Jun;375:461–479. doi: 10.1113/jphysiol.1986.sp016128. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES