Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jan 15;170(1):17–22. doi: 10.1042/bj1700017

The pentose phosphate pathway in regenerating skeletal muscle.

K R Wagner, F C Kauffman, S R Max
PMCID: PMC1183856  PMID: 629775

Abstract

1. The activities of the oxidative enzymes (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and of the non-oxidative enzymes (transaldolase, tranketolase, ribose 5 phosphate isomerase and ribulose 5-phosphate 3-epimerase) of the pentose phosphate pathway were measured at various times during the first 24h of skeletal-muscle regeneration after administration of Marcaine, a mytoxic local anesthetic. 2. The activities of the oxidative enzymes increased after Marcaine injection and rose to 9 times control activities by 24h. 3. The activities of all non-oxidative enzymes were increased after Marcaine administration, but to a much smaller extent than the oxidative enzymes (1.1-1.7-fold). 4. Histochemical analysis localized glucose 6-phosphate dehydrogenase activity within muscle fibres of control and Marcaine-treated muscles. 5. Cycloheximide or actinomycin D prevented the increase in oxidative enzyme activities, suggesting a requirement for synthesis of protein and RNA.

Full text

PDF
20-1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcangeli P., Digiesi V., Masala B., Serra M. V., Congiu A. Metabolism of skeletal muscle following incomplete ischemia. Angiology. 1973 Feb;24(2):114–122. doi: 10.1177/000331977302400207. [DOI] [PubMed] [Google Scholar]
  2. BEACONSFIELD P., CARPI A. LOCALIZATION OF AN INFECTIOUS LESION AND GLUCOSE METABOLISM VIA THE PENTOSE PHOSPHATE PATHWAY. Nature. 1964 Feb 22;201:825–827. doi: 10.1038/201825b0. [DOI] [PubMed] [Google Scholar]
  3. BEACONSFIELD P., READING H. W. PATHWAYS OF GLUCOSE METABOLISM AND NUCLEIC ACID SYNTHESIS. Nature. 1964 May 2;202:464–466. doi: 10.1038/202464a0. [DOI] [PubMed] [Google Scholar]
  4. Beatty C. H., Basinger G. M., Bocek R. M. Pentose cycle activity in muscle from fetal, neonatal and infant rhesus monkeys. Arch Biochem Biophys. 1966 Nov;117(2):275–281. doi: 10.1016/0003-9861(66)90413-9. [DOI] [PubMed] [Google Scholar]
  5. Benoit P. W., Belt W. D. Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (Marcaine). J Anat. 1970 Nov;107(Pt 3):547–556. [PMC free article] [PubMed] [Google Scholar]
  6. Betts S. A., Mayer R. J. Regulation of enzyme turnover during tissue differentiation. Studies on 6-phosphogluconate dehydrogenase in rabbit mammary gland in organ culture. Biochim Biophys Acta. 1977 Feb 28;496(2):302–311. doi: 10.1016/0304-4165(77)90312-9. [DOI] [PubMed] [Google Scholar]
  7. GLOCK G. E., McLEAN P. Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochem J. 1953 Oct;55(3):400–408. doi: 10.1042/bj0550400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garcia D. R., Holten D. Inhibition of rat liver glucose-6-phosphate dehydrogenase synthesis by glucagon. J Biol Chem. 1975 May 25;250(10):3960–3965. [PubMed] [Google Scholar]
  9. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  10. Grampp W., Harris J. B., Thesleff S. Inhibition of denervation changes in skeletal muscle by blockers of protein synthesis. J Physiol. 1972 Mar;221(3):743–754. doi: 10.1113/jphysiol.1972.sp009780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grayman G., Bradbury M. W., Kleeman C. R. Intracellular pH of the amphibian brain incubated in vitro. Life Sci. 1968 May 1;7(9):499–504. doi: 10.1016/0024-3205(68)90053-2. [DOI] [PubMed] [Google Scholar]
  12. Hall-Craggs E. C. Rapid degeneration and regeneration of a whole skeletal muscle following treatment with bupivacaine (Marcain). Exp Neurol. 1974 May;43(2):349–358. doi: 10.1016/0014-4886(74)90176-9. [DOI] [PubMed] [Google Scholar]
  13. Hall-Craggs E. C., Seyan H. S. Histochemical changes in innervated and denervated skeletal muscle fibers following treatment with bupivacaine (marcain). Exp Neurol. 1975 Feb;46(2):345–354. doi: 10.1016/0014-4886(75)90140-5. [DOI] [PubMed] [Google Scholar]
  14. Heinrich P. C., Morris H. P., Weber G. Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1) Activities in normal, neoplastic, differentiating, and regenerating liver. Cancer Res. 1976 Sep;36(9 PT1):3189–3197. [PubMed] [Google Scholar]
  15. Hizi A., Yagil G. On the mechanism of glucose-6-phosphate dehydrogenase regulation in mouse liver. 3. The rate of enzyme synthesis and degradation. Eur J Biochem. 1974 Jun 1;45(1):211–221. doi: 10.1111/j.1432-1033.1974.tb03545.x. [DOI] [PubMed] [Google Scholar]
  16. Ilyin V. S., Razumovskaya N. I., Usatenko M. S. Influence of nerve impulse on enzyme synthesis in skeletal muscle. Adv Enzyme Regul. 1975;13:219–234. doi: 10.1016/0065-2571(75)90017-5. [DOI] [PubMed] [Google Scholar]
  17. Jirmanová I., Thesleff S. Ultrastructural study of experimental muscle degeneration and regeneration in the adult rat. Z Zellforsch Mikrosk Anat. 1972;131(1):77–97. doi: 10.1007/BF00307202. [DOI] [PubMed] [Google Scholar]
  18. Kahn A., Boivin P., Rubinson H., Cottreau D., Marie J., Dreyfus J. C. Modifications of purified glucose-6-phosphate dehydrogenase and other enzymes by a factor of low molecular weight abundant in some leukemic cells. Proc Natl Acad Sci U S A. 1976 Jan;73(1):77–81. doi: 10.1073/pnas.73.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kauffman F. C., Albuquerque E. X., Warnick J. E., Max S. R. Effect of vinblastine on neural regulation of metabolism in rat skeletal muscle. Exp Neurol. 1976 Jan;50(1):60–66. doi: 10.1016/0014-4886(76)90235-1. [DOI] [PubMed] [Google Scholar]
  20. Kauffman F. C., Pickel V. M., Sims K. L., Bloom F. E. Localization of nicotinamide adenine dinucleotide phosphate-dependent dehydrogenases in catecholamine-containing neurons of rat brain. Studies on the nucleus locus ceruleus. J Histochem Cytochem. 1974 Jan;22(1):20–28. doi: 10.1177/22.1.20. [DOI] [PubMed] [Google Scholar]
  21. Koski C. L., Max S. R. Substrate utilization by the denervated rat hemidiaphragm. Exp Neurol. 1974 Jun;43(3):547–554. doi: 10.1016/0014-4886(74)90194-0. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Max S. R., Mayer R. F., Vogelsang L. Lysosomes and disuse atrophy of skeletal muscle. Arch Biochem Biophys. 1971 Sep;146(1):227–232. doi: 10.1016/s0003-9861(71)80059-0. [DOI] [PubMed] [Google Scholar]
  24. Narayanan N., Eapen J. Effect of cycloheximide on in vitro and in vivo protein synthesis by certain tissues of rats and pigeons with special reference to muscle. Can J Physiol Pharmacol. 1973 Dec;51(12):933–941. doi: 10.1139/y73-141. [DOI] [PubMed] [Google Scholar]
  25. Neerunjun J. S., Dubowitz V. Muscle transplantation and regeneration in the dystrophic hamster. Part 2. Histochemical studies. J Neurol Sci. 1974 Dec;23(4):521–536. doi: 10.1016/0022-510x(74)90024-0. [DOI] [PubMed] [Google Scholar]
  26. Novello F., McLean P. The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem J. 1968 May;107(6):775–791. doi: 10.1042/bj1070775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Procsal D., Winberry L., Holten D. Dietary regulation of 6-phosphogluconate dehydrogenase synthesis. J Biol Chem. 1976 Jun 25;251(12):3539–3544. [PubMed] [Google Scholar]
  28. Rifenberick D. H., Koski C. L., Max S. R. Metabolic studies of skeletal muscle regeneration. Exp Neurol. 1974 Dec;45(3):527–540. doi: 10.1016/0014-4886(74)90158-7. [DOI] [PubMed] [Google Scholar]
  29. Rudack D., Chisholm E. M., Holten D. Rat liver glucose 6-phosphate dehydrogenase. Regulation by carbohydrate diet and insulin. J Biol Chem. 1971 Mar 10;246(5):1249–1254. [PubMed] [Google Scholar]
  30. SMITH B. HISTOCHEMICAL CHANGES IN MUSCLE NECROSIS AND REGENERATION. J Pathol Bacteriol. 1965 Jan;89:139–143. doi: 10.1002/path.1700890115. [DOI] [PubMed] [Google Scholar]
  31. Selmeci L. E., Weber G. Increased glucose 6-phosphate dehydrogenase concentration in hepatoma 3924A: enzymic and immunological evidence. FEBS Lett. 1976 Jan 1;61(1):63–67. doi: 10.1016/0014-5793(76)80172-x. [DOI] [PubMed] [Google Scholar]
  32. Smith E. R., Barker K. L. Effects of estradiol and nicotinamide adenine dinucleotide phosphate on the rate of synthesis of uterine glucose 6-phosphate dehydrogenase. J Biol Chem. 1974 Oct 25;249(20):6541–6547. [PubMed] [Google Scholar]
  33. Snow M. H. Metabolic activity during the degenerative and early regenerative stages of minced skeletal muscle. Anat Rec. 1973 Jun;176(2):185–203. doi: 10.1002/ar.1091760207. [DOI] [PubMed] [Google Scholar]
  34. Susheela A. K., Hudgson P., Walton J. N. Murine muscular dystrophy. Some histochemical and biochemical observations. J Neurol Sci. 1968 Nov-Dec;7(3):437–463. doi: 10.1016/0022-510x(68)90052-x. [DOI] [PubMed] [Google Scholar]
  35. Tan E. L., Wood T. Enzymes of the pentose phosphate cycle in muscles of rat, ox, frog, lobster, chicken, northern pike and carp, and Ehrlich ascites cells. Comp Biochem Physiol. 1969 Nov 15;31(4):635–643. doi: 10.1016/0010-406x(69)90064-4. [DOI] [PubMed] [Google Scholar]
  36. Turner L. V., Manchester K. L. Effects of denervation on the glycogen content and on the activities of enzymes of glucose and glycogen metabolism in rat diaphragm muscle. Biochem J. 1972 Jul;128(4):789–801. doi: 10.1042/bj1280789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watanabe A., Taketa K. Actinomycin D-insensitive induction of rat liver glucose-6-phosphate dehydrogenase by carbon tetrachloride injury. J Biochem. 1973 Apr;73(4):771–779. doi: 10.1093/oxfordjournals.jbchem.a130140. [DOI] [PubMed] [Google Scholar]
  38. Yagil G., Shimron F., Hizi A. On the mechanism of glucose-6-phosphate dehydrogenase regulation in mouse liver. 1. Characterization of the system. Eur J Biochem. 1974 Jun 1;45(1):189–200. doi: 10.1111/j.1432-1033.1974.tb03543.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES