Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Jun;72(6):2457–2469. doi: 10.1016/S0006-3495(97)78890-8

The extracellular potential of a myelinated nerve fiber in an unbounded medium and in nerve cuff models.

J J Struijk 1
PMCID: PMC1184444  PMID: 9168022

Abstract

A model is presented for the calculation of single myelinated fiber action potentials in an unbounded homogeneous medium and in nerve cuff electrodes. The model consists of a fiber model, used to calculate the action currents at the nodes of Ranvier, and a cylindrically symmetrical volume conductor model in which the fiber's nodes are represented as point current sources. The extracellular action potentials were shown to remain unchanged if the fiber diameter and the volume conductor geometry are scaled by the same factor (principle of corresponding states), both in an unbounded homogeneous medium and in an inhomogeneous volume conductor. The influence of several cuff electrode parameters, among others, cuff length and cuff diameter, were studied, and the results were compared, where possible, with theoretical and experimental results as reported in the literature.

Full text

PDF
2464

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker A. T. Nerve conduction velocity distributions: an iterative method using two compound action potentials recorded from the same site. Prog Clin Biol Res. 1981;52:137–180. [PubMed] [Google Scholar]
  2. Chiu S. Y., Ritchie J. M., Rogart R. B., Stagg D. A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol. 1979 Jul;292:149–166. doi: 10.1113/jphysiol.1979.sp012843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davis L. A., Gordon T., Hoffer J. A., Jhamandas J., Stein R. B. Compound action potentials recorded from mammalian peripheral nerves following ligation or resuturing. J Physiol. 1978 Dec;285:543–559. doi: 10.1113/jphysiol.1978.sp012588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FITZHUGH R. Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J. 1962 Jan;2:11–21. doi: 10.1016/s0006-3495(62)86837-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ganapathy N., Clark J. W., Jr Extracellular currents and potentials of the active myelinated nerve fiber. Biophys J. 1987 Nov;52(5):749–761. doi: 10.1016/S0006-3495(87)83269-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldman L., Albus J. S. Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J. 1968 May;8(5):596–607. doi: 10.1016/S0006-3495(68)86510-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gu D., Gander R. E., Crichlow E. C. Determination of nerve conduction velocity distribution from sampled compound action potential signals. IEEE Trans Biomed Eng. 1996 Aug;43(8):829–838. doi: 10.1109/10.508545. [DOI] [PubMed] [Google Scholar]
  8. Marks W. B., Loeb G. E. Action currents, internodal potentials, and extracellular records of myelinated mammalian nerve fibers derived from node potentials. Biophys J. 1976 Jun;16(6):655–668. doi: 10.1016/S0006-3495(76)85719-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Olson W. H., BeMent S. L. Compound action potential reconstructions and predicted fiber diameter distributions. Prog Clin Biol Res. 1981;52:57–83. [PubMed] [Google Scholar]
  10. PLONSEY R. VOLUME CONDUCTOR FIELDS OF ACTION CURRENTS. Biophys J. 1964 Jul;4:317–328. doi: 10.1016/s0006-3495(64)86785-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Plonsey R. The active fiber in a volume conductor. IEEE Trans Biomed Eng. 1974 Sep;21(5):371–381. doi: 10.1109/TBME.1974.324406. [DOI] [PubMed] [Google Scholar]
  12. RUSHTON W. A. H. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951 Sep;115(1):101–122. doi: 10.1113/jphysiol.1951.sp004655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rijkhoff N. J., Holsheimer J., Koldewijn E. L., Struijk J. J., van Kerrebroeck P. E., Debruyne F. M., Wijkstra H. Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling. IEEE Trans Biomed Eng. 1994 May;41(5):413–424. doi: 10.1109/10.293215. [DOI] [PubMed] [Google Scholar]
  14. Schoonhoven R., Stegeman D. F. Models and analysis of compound nerve action potentials. Crit Rev Biomed Eng. 1991;19(1):47–111. [PubMed] [Google Scholar]
  15. Stein R. B., Charles D., Davis L., Jhamandas J., Mannard A., Nichols T. R. Principles underlying new methods for chronic neural recording. Can J Neurol Sci. 1975 Aug;2(3):235–244. doi: 10.1017/s0317167100020333. [DOI] [PubMed] [Google Scholar]
  16. Stein R. B., Oğuztöreli M. N. The radial decline of nerve impulses in a restricted cylindrical extracellular space. Biol Cybern. 1978 Feb 15;28(3):159–165. doi: 10.1007/BF00337137. [DOI] [PubMed] [Google Scholar]
  17. Stein R. B., Pearson K. G. Predicted amplitude and form of action potentials recorded from unmyelinated nerve fibres. J Theor Biol. 1971 Sep;32(3):539–558. doi: 10.1016/0022-5193(71)90155-x. [DOI] [PubMed] [Google Scholar]
  18. Stephanova D., Trayanova N., Gydikov A., Kossev A. Extracellular potentials of a single myelinated nerve fiber in an unbounded volume conductor. Biol Cybern. 1989;61(3):205–210. doi: 10.1007/BF00198767. [DOI] [PubMed] [Google Scholar]
  19. Struijk J. J., Holsheimer J., van der Heide G. G., Boom H. B. Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching. IEEE Trans Biomed Eng. 1992 Sep;39(9):903–912. doi: 10.1109/10.256423. [DOI] [PubMed] [Google Scholar]
  20. Trayanova N. A., Henriquez C. S., Plonsey R. Limitations of approximate solutions for computing the extracellular potential of single fibers and bundle equivalents. IEEE Trans Biomed Eng. 1990 Jan;37(1):22–35. doi: 10.1109/10.43608. [DOI] [PubMed] [Google Scholar]
  21. Wijesinghe R. S., Gielen F. L., Wikswo J. P., Jr A model for compound action potentials and currents in a nerve bundle. I: The forward calculation. Ann Biomed Eng. 1991;19(1):43–72. doi: 10.1007/BF02368460. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES