Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Mar;72(3):1080–1091. doi: 10.1016/S0006-3495(97)78758-7

Sensing and refilling calcium stores in an excitable cell.

Y X Li 1, S S Stojilković 1, J Keizer 1, J Rinzel 1
PMCID: PMC1184494  PMID: 9138557

Abstract

Inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ mobilization leads to depletion of the endoplasmic reticulum (ER) and an increase in Ca2+ entry. We show here for the gonadotroph, an excitable endocrine cell, that sensing of ER Ca2+ content can occur without the Ca2+ release-activated Ca2+ current (Icrac), but rather through the coupling of IP3-induced Ca2+ oscillations to plasma membrane voltage spikes that gate Ca2+ entry. Thus we demonstrate that capacitative Ca2+ entry is accomplished through Ca(2+)-controlled Ca2+ entry. We develop a comprehensive model, with parameter values constrained by available experimental data, to simulate the spatiotemporal behavior of agonist-induced Ca2+ signals in both the cytosol and ER lumen of gonadotrophs. The model combines two previously developed models, one for ER-mediated Ca2+ oscillations and another for plasma membrane potential-driven Ca2+ oscillations. Simulations show agreement with existing experimental records of store content, cytosolic Ca2+ concentration ([Ca2+]i), and electrical activity, and make a variety of new, experimentally testable predictions. In particular, computations with the model suggest that [Ca2+]i in the vicinity of the plasma membrane acts as a messenger for ER content via Ca(2+)-activated K+ channels and Ca2+ pumps in the plasma membrane. We conclude that, in excitable cells that do not express Icrac, [Ca2+]i profiles provide a sensitive mechanism for regulating net calcium flux through the plasma membrane during both store depletion and refilling.

Full text

PDF
1080

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  2. Bashir Z. I., Bortolotto Z. A., Davies C. H., Berretta N., Irving A. J., Seal A. J., Henley J. M., Jane D. E., Watkins J. C., Collingridge G. L. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature. 1993 May 27;363(6427):347–350. doi: 10.1038/363347a0. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  6. Bootman M. D. Quantal Ca2+ release from InsP3-sensitive intracellular Ca2+ stores. Mol Cell Endocrinol. 1994 Jan;98(2):157–166. doi: 10.1016/0303-7207(94)90134-1. [DOI] [PubMed] [Google Scholar]
  7. Casteels R., Droogmans G. Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol. 1981 Aug;317:263–279. doi: 10.1113/jphysiol.1981.sp013824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chatton J. Y., Liu H., Stucki J. W. Simultaneous measurements of Ca2+ in the intracellular stores and the cytosol of hepatocytes during hormone-induced Ca2+ oscillations. FEBS Lett. 1995 Jul 10;368(1):165–168. doi: 10.1016/0014-5793(95)00632-j. [DOI] [PubMed] [Google Scholar]
  9. De Young G. W., Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9895–9899. doi: 10.1073/pnas.89.20.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  11. Iida T., Stojilković S. S., Izumi S., Catt K. J. Spontaneous and agonist-induced calcium oscillations in pituitary gonadotrophs. Mol Endocrinol. 1991 Jul;5(7):949–958. doi: 10.1210/mend-5-7-949. [DOI] [PubMed] [Google Scholar]
  12. Iino M. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol. 1990 Jun;95(6):1103–1122. doi: 10.1085/jgp.95.6.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaffe D. B., Brown T. H. Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J Neurophysiol. 1994 Jul;72(1):471–474. doi: 10.1152/jn.1994.72.1.471. [DOI] [PubMed] [Google Scholar]
  14. Jouaville L. S., Ichas F., Holmuhamedov E. L., Camacho P., Lechleiter J. D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature. 1995 Oct 5;377(6548):438–441. doi: 10.1038/377438a0. [DOI] [PubMed] [Google Scholar]
  15. Katsuki H., Saito H., Satoh M. The involvement of muscarinic, beta-adrenergic and metabotropic glutamate receptors in long-term potentiation in the fimbria-CA3 pathway of the hippocampus. Neurosci Lett. 1992 Aug 17;142(2):249–252. doi: 10.1016/0304-3940(92)90384-j. [DOI] [PubMed] [Google Scholar]
  16. Kukuljan M., Rojas E., Catt K. J., Stojilkovic S. S. Membrane potential regulates inositol 1,4,5-trisphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs. J Biol Chem. 1994 Feb 18;269(7):4860–4865. [PubMed] [Google Scholar]
  17. Kukuljan M., Stojilković S. S., Rojas E., Catt K. J. Apamin-sensitive potassium channels mediate agonist-induced oscillations of membrane potential in pituitary gonadotrophs. FEBS Lett. 1992 Apr 13;301(1):19–22. doi: 10.1016/0014-5793(92)80201-q. [DOI] [PubMed] [Google Scholar]
  18. Leong D. A., Thorner M. O. A potential code of luteinizing hormone-releasing hormone-induced calcium ion responses in the regulation of luteinizing hormone secretion among individual gonadotropes. J Biol Chem. 1991 May 15;266(14):9016–9022. [PubMed] [Google Scholar]
  19. Li Y. X., Keizer J., Stojilković S. S., Rinzel J. Ca2+ excitability of the ER membrane: an explanation for IP3-induced Ca2+ oscillations. Am J Physiol. 1995 Nov;269(5 Pt 1):C1079–C1092. doi: 10.1152/ajpcell.1995.269.5.C1079. [DOI] [PubMed] [Google Scholar]
  20. Li Y. X., Rinzel J., Keizer J., Stojilković S. S. Calcium oscillations in pituitary gonadotrophs: comparison of experiment and theory. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):58–62. doi: 10.1073/pnas.91.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Y. X., Rinzel J., Vergara L., Stojilković S. S. Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs. Biophys J. 1995 Sep;69(3):785–795. doi: 10.1016/S0006-3495(95)79952-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lin C., Hajnóczky G., Thomas A. P. Propagation of cytosolic calcium waves into the nuclei of hepatocytes. Cell Calcium. 1994 Oct;16(4):247–258. doi: 10.1016/0143-4160(94)90088-4. [DOI] [PubMed] [Google Scholar]
  23. McArdle C. A., Forrest-Owen W., Davidson J. S., Fowkes R., Bunting R., Mason W. T., Poch A., Kratzmeier M. Ca2+ entry in gonadotrophs and alpha T3-1 cells: does store-dependent Ca2+ influx mediate gonadotrophin-releasing hormone action? J Endocrinol. 1996 Apr;149(1):155–169. doi: 10.1677/joe.0.1490155. [DOI] [PubMed] [Google Scholar]
  24. Morgan R. O., Chang J. P., Catt K. J. Novel aspects of gonadotropin-releasing hormone action on inositol polyphosphate metabolism in cultured pituitary gonadotrophs. J Biol Chem. 1987 Jan 25;262(3):1166–1171. [PubMed] [Google Scholar]
  25. Putney J. W., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986 Feb;7(1):1–12. doi: 10.1016/0143-4160(86)90026-6. [DOI] [PubMed] [Google Scholar]
  26. Rawlings S. R., Berry D. J., Leong D. A. Evidence for localized calcium mobilization and influx in single rat gonadotropes. J Biol Chem. 1991 Nov 25;266(33):22755–22760. [PubMed] [Google Scholar]
  27. Schiegg A., Gerstner W., Ritz R., van Hemmen J. L. Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines. J Neurophysiol. 1995 Sep;74(3):1046–1055. doi: 10.1152/jn.1995.74.3.1046. [DOI] [PubMed] [Google Scholar]
  28. Shangold G. A., Murphy S. N., Miller R. J. Gonadotropin-releasing hormone-induced Ca2+ transients in single identified gonadotropes require both intracellular Ca2+ mobilization and Ca2+ influx. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6566–6570. doi: 10.1073/pnas.85.17.6566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stojilkovic S. S., Reinhart J., Catt K. J. Gonadotropin-releasing hormone receptors: structure and signal transduction pathways. Endocr Rev. 1994 Aug;15(4):462–499. doi: 10.1210/edrv-15-4-462. [DOI] [PubMed] [Google Scholar]
  30. Stojilkovic S. S., Tomic M., Kukuljan M., Catt K. J. Control of calcium spiking frequency in pituitary gonadotrophs by a single-pool cytoplasmic oscillator. Mol Pharmacol. 1994 May;45(5):1013–1021. [PubMed] [Google Scholar]
  31. Stojilković S. S., Kukuljan M., Iida T., Rojas E., Catt K. J. Integration of cytoplasmic calcium and membrane potential oscillations maintains calcium signaling in pituitary gonadotrophs. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4081–4085. doi: 10.1073/pnas.89.9.4081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stojilković S. S., Kukuljan M., Tomić M., Rojas E., Catt K. J. Mechanism of agonist-induced [Ca2+]i oscillations in pituitary gonadotrophs. J Biol Chem. 1993 Apr 15;268(11):7713–7720. [PubMed] [Google Scholar]
  33. Stojilković S. S., Stutzin A., Izumi S., Dufour S., Torsello A., Virmani M. A., Rojas E., Catt K. J. Generation and amplification of the cytosolic calcium signal during secretory responses to gonadotropin-releasing hormone. New Biol. 1990 Mar;2(3):272–283. [PubMed] [Google Scholar]
  34. Stutzin A., Stojilković S. S., Catt K. J., Rojas E. Characteristics of two types of calcium channels in rat pituitary gonadotrophs. Am J Physiol. 1989 Nov;257(5 Pt 1):C865–C874. doi: 10.1152/ajpcell.1989.257.5.C865. [DOI] [PubMed] [Google Scholar]
  35. Takemura H., Hughes A. R., Thastrup O., Putney J. W., Jr Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem. 1989 Jul 25;264(21):12266–12271. [PubMed] [Google Scholar]
  36. Tanimura A., Turner R. J. Inositol 1,4,5-trisphosphate-dependent oscillations of luminal [Ca2+] in permeabilized HSY cells. J Biol Chem. 1996 Nov 29;271(48):30904–30908. doi: 10.1074/jbc.271.48.30904. [DOI] [PubMed] [Google Scholar]
  37. Tse A., Hille B. GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. Science. 1992 Jan 24;255(5043):462–464. doi: 10.1126/science.1734523. [DOI] [PubMed] [Google Scholar]
  38. Tse A., Hille B. Role of voltage-gated Na+ and Ca2+ channels in gonadotropin-releasing hormone-induced membrane potential changes in identified rat gonadotropes. Endocrinology. 1993 Apr;132(4):1475–1481. doi: 10.1210/endo.132.4.8384989. [DOI] [PubMed] [Google Scholar]
  39. Tse A., Tse F. W., Hille B. Calcium homeostasis in identified rat gonadotrophs. J Physiol. 1994 Jun 15;477(Pt 3):511–525. doi: 10.1113/jphysiol.1994.sp020212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tse F. W., Tse A., Hille B. Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9750–9754. doi: 10.1073/pnas.91.21.9750. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES