Abstract
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of approximately 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV. Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of approximately 115 pS and depolarization of approximately 32 mV. All these results are consistent with cAMP-gated cation channels dominating the odorant response. This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Full text
PDF![1442](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/b7f922cf37c0/biophysj00036-0462.png)
![1443](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/28efef5c042a/biophysj00036-0463.png)
![1444](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/0b0e19058fee/biophysj00036-0464.png)
![1445](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/47449790953d/biophysj00036-0465.png)
![1446](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/1565f311fd48/biophysj00036-0466.png)
![1447](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/31d5cea4e3be/biophysj00036-0467.png)
![1448](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/f7a5992b3c63/biophysj00036-0468.png)
![1449](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/db321970b44f/biophysj00036-0469.png)
![1450](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/3704ac335fc4/biophysj00036-0470.png)
![1451](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/9f565e29a663/biophysj00036-0471.png)
![1452](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/bdc180761e82/biophysj00036-0472.png)
![1453](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/c017fbd70275/biophysj00036-0473.png)
![1454](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/533c2d9e24cf/biophysj00036-0474.png)
![1455](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/95bf41f74462/biophysj00036-0475.png)
![1456](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/00ff656f8004/biophysj00036-0476.png)
![1457](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/1184527/b6d96df680c6/biophysj00036-0477.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ache B. W., Zhainazarov A. Dual second-messenger pathways in olfactory transduction. Curr Opin Neurobiol. 1995 Aug;5(4):461–466. doi: 10.1016/0959-4388(95)80006-9. [DOI] [PubMed] [Google Scholar]
- Barry P. H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J Neurosci Methods. 1994 Jan;51(1):107–116. doi: 10.1016/0165-0270(94)90031-0. [DOI] [PubMed] [Google Scholar]
- Barry P. H., Quartararo N. PNSCROLL, a software package for graphical interactive analysis of single channel patch clamp currents and other binary file records: under mouse control. Comput Biol Med. 1990;20(3):193–204. doi: 10.1016/0010-4825(90)90005-a. [DOI] [PubMed] [Google Scholar]
- Bezanilla F. A high capacity data recording device based on a digital audio processor and a video cassette recorder. Biophys J. 1985 Mar;47(3):437–441. doi: 10.1016/S0006-3495(85)83935-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dionne V. E., Dubin A. E. Transduction diversity in olfaction. J Exp Biol. 1994 Sep;194:1–21. doi: 10.1242/jeb.194.1.1. [DOI] [PubMed] [Google Scholar]
- Dubin A. E., Dionne V. E. Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction. J Gen Physiol. 1994 Feb;103(2):181–201. doi: 10.1085/jgp.103.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubin A. E., Dionne V. E. Modulation of Cl-, K+, and nonselective cation conductances by taurine in olfactory receptor neurons of the mudpuppy Necturus maculosus. J Gen Physiol. 1993 Apr;101(4):469–485. doi: 10.1085/jgp.101.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fadool D. A., Ache B. W. Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron. 1992 Nov;9(5):907–918. doi: 10.1016/0896-6273(92)90243-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Firestein S., Shepherd G. M., Werblin F. S. Time course of the membrane current underlying sensory transduction in salamander olfactory receptor neurones. J Physiol. 1990 Nov;430:135–158. doi: 10.1113/jphysiol.1990.sp018286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frings S., Lynch J. W., Lindemann B. Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol. 1992 Jul;100(1):45–67. doi: 10.1085/jgp.100.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frings S., Seifert R., Godde M., Kaupp U. B. Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron. 1995 Jul;15(1):169–179. doi: 10.1016/0896-6273(95)90074-8. [DOI] [PubMed] [Google Scholar]
- Hatt H., Ache B. W. Cyclic nucleotide- and inositol phosphate-gated ion channels in lobster olfactory receptor neurons. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6264–6268. doi: 10.1073/pnas.91.14.6264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleene S. J. Block by external calcium and magnesium of the cyclic-nucleotide-activated current in olfactory cilia. Neuroscience. 1995 Jun;66(4):1001–1008. doi: 10.1016/0306-4522(94)00634-h. [DOI] [PubMed] [Google Scholar]
- Kleene S. J. Origin of the chloride current in olfactory transduction. Neuron. 1993 Jul;11(1):123–132. doi: 10.1016/0896-6273(93)90276-w. [DOI] [PubMed] [Google Scholar]
- Kurahashi T. Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J Physiol. 1989 Dec;419:177–192. doi: 10.1113/jphysiol.1989.sp017868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurahashi T., Kaneko A. Gating properties of the cAMP-gated channel in toad olfactory receptor cells. J Physiol. 1993 Jul;466:287–302. [PMC free article] [PubMed] [Google Scholar]
- Kurahashi T., Shibuya T. Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res. 1990 May 7;515(1-2):261–268. doi: 10.1016/0006-8993(90)90605-b. [DOI] [PubMed] [Google Scholar]
- Kurahashi T., Yau K. W. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature. 1993 May 6;363(6424):71–74. doi: 10.1038/363071a0. [DOI] [PubMed] [Google Scholar]
- Lowe G., Gold G. H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature. 1993 Nov 18;366(6452):283–286. doi: 10.1038/366283a0. [DOI] [PubMed] [Google Scholar]
- Lowe G., Gold G. H. Olfactory transduction is intrinsically noisy. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7864–7868. doi: 10.1073/pnas.92.17.7864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch J. W., Barry P. H. Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophys J. 1989 Apr;55(4):755–768. doi: 10.1016/S0006-3495(89)82874-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch J. W., Barry P. H. Inward rectification in rat olfactory receptor neurons. Proc Biol Sci. 1991 Feb 22;243(1307):149–153. doi: 10.1098/rspb.1991.0024. [DOI] [PubMed] [Google Scholar]
- Lynch J. W., Barry P. H. Properties of transient K+ currents and underlying single K+ channels in rat olfactory receptor neurons. J Gen Physiol. 1991 May;97(5):1043–1072. doi: 10.1085/jgp.97.5.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morales B., Ugarte G., Labarca P., Bacigalupo J. Inhibitory K+ current activated by odorants in toad olfactory neurons. Proc Biol Sci. 1994 Sep 22;257(1350):235–242. doi: 10.1098/rspb.1994.0120. [DOI] [PubMed] [Google Scholar]
- Nakamura T., Gold G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. 1987 Jan 29-Feb 4Nature. 325(6103):442–444. doi: 10.1038/325442a0. [DOI] [PubMed] [Google Scholar]
- Okada Y., Teeter J. H., Restrepo D. Inositol 1,4,5-trisphosphate-gated conductance in isolated rat olfactory neurons. J Neurophysiol. 1994 Feb;71(2):595–602. doi: 10.1152/jn.1994.71.2.595. [DOI] [PubMed] [Google Scholar]
- Pace U., Hanski E., Salomon Y., Lancet D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature. 1985 Jul 18;316(6025):255–258. doi: 10.1038/316255a0. [DOI] [PubMed] [Google Scholar]
- Pun R. Y., Kleene S. J., Gesteland R. C. Guanine nucleotides modulate steady-state inactivation of voltage-gated sodium channels in frog olfactory receptor neurons. J Membr Biol. 1994 Oct;142(1):103–111. doi: 10.1007/BF00233387. [DOI] [PubMed] [Google Scholar]
- Rajendra S., Lynch J. W., Barry P. H. An analysis of Na+ currents in rat olfactory receptor neurons. Pflugers Arch. 1992 Mar;420(3-4):342–346. doi: 10.1007/BF00374468. [DOI] [PubMed] [Google Scholar]
- Reed R. R. Signaling pathways in odorant detection. Neuron. 1992 Feb;8(2):205–209. doi: 10.1016/0896-6273(92)90287-n. [DOI] [PubMed] [Google Scholar]
- Schild D., Lischka F. W. Amiloride-insensitive cation conductance in Xenopus laevis olfactory neurons: a combined patch clamp and calcium imaging analysis. Biophys J. 1994 Feb;66(2 Pt 1):299–304. doi: 10.1016/s0006-3495(94)80804-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schild D., Lischka F. W., Restrepo D. InsP3 causes an increase in apical [Ca2+]i by activating two distinct current components in vertebrate olfactory receptor cells. J Neurophysiol. 1995 Feb;73(2):862–866. doi: 10.1152/jn.1995.73.2.862. [DOI] [PubMed] [Google Scholar]
- Trotier D. A patch-clamp analysis of membrane currents in salamander olfactory receptor cells. Pflugers Arch. 1986 Dec;407(6):589–595. doi: 10.1007/BF00582636. [DOI] [PubMed] [Google Scholar]
- Zhainazarov A. B., Ache B. W. Na(+)-activated nonselective cation channels in primary olfactory neurons. J Neurophysiol. 1995 May;73(5):1774–1781. doi: 10.1152/jn.1995.73.5.1774. [DOI] [PubMed] [Google Scholar]
- Zufall F., Firestein S. Divalent cations block the cyclic nucleotide-gated channel of olfactory receptor neurons. J Neurophysiol. 1993 May;69(5):1758–1768. doi: 10.1152/jn.1993.69.5.1758. [DOI] [PubMed] [Google Scholar]