Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 Jun;113(1):117–121. doi: 10.1042/bj1130117

The binding of spermine to the ribosomes and ribosomal ribonucleic acid from Bacillus stearothermophilus

L Stevens 1,*
PMCID: PMC1184610  PMID: 5806384

Abstract

1. The total intracellular concentrations of Na+, K+, Mg2+, spermine, spermidine and RNA were measured in Bacillus stearothermophilus. 2. The binding of spermine to ribosomes and to ribosomal RNA from B. stearothermophilus was studied under various conditions by using a gel-filtration technique. 3. The affinity of spermine for ribosomes and for ribosomal RNA decreased with increasing ionic strength of the medium in which they were suspended. 4. The extent of spermine binding did not change appreciably in the temperature range 4–60°. 5. Optimum binding occurred at about pH7·0. 6. The number of binding sites for spermine on either ribosomes or ribosomal RNA was 0·10–0·13/RNA phosphate group. 7. A high proportion of the intracellular spermine is likely to be bound to the ribosomes in vivo; spermine competes with Mg2+ on equal terms for sites on the ribosomes.

Full text

PDF
118

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Alcock N. W., MacIntyre I. Methods for estimating magnesium in biological materials. Methods Biochem Anal. 1966;14:1–52. doi: 10.1002/9780470110324.ch1. [DOI] [PubMed] [Google Scholar]
  3. CERIOTTI G. Determination of nucleic acids in animal tissues. J Biol Chem. 1955 May;214(1):59–70. [PubMed] [Google Scholar]
  4. Choi Y. S., Carr C. W. Ion-binding studies of ribonucleic acid and Escherichia coli ribosomes. J Mol Biol. 1967 Apr 28;25(2):331–345. doi: 10.1016/0022-2836(67)90145-3. [DOI] [PubMed] [Google Scholar]
  5. Dion A. S., Herbst E. J. The localization of spermidine in salivary gland cells of Drosophila melanogaster and its effect on H3-uridine incorporation. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2367–2371. doi: 10.1073/pnas.58.6.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EDELMAN I. S., TS'O P. O., VINOGRAD J. The binding of magnesium to microsomal nucleoprotein and ribonucleic acid. Biochim Biophys Acta. 1960 Oct 7;43:393–403. doi: 10.1016/0006-3002(60)90464-9. [DOI] [PubMed] [Google Scholar]
  7. Fairclough G. F., Jr, Fruton J. S. Peptide-protein interaction as studied by gel filtration. Biochemistry. 1966 Feb;5(2):673–683. doi: 10.1021/bi00866a038. [DOI] [PubMed] [Google Scholar]
  8. Goldberg A. Magnesium binding by Escherichia coli ribosomes. J Mol Biol. 1966 Feb;15(2):663–673. doi: 10.1016/s0022-2836(66)80134-1. [DOI] [PubMed] [Google Scholar]
  9. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  10. Hirschman S., Leng M., Felsenfield G. Interaction of spermine and DNA. Biopolymers. 1967 Feb;5(2):227–233. doi: 10.1002/bip.1967.360050209. [DOI] [PubMed] [Google Scholar]
  11. Hurwitz C., Rosano C. L. The intracellular concentration of bound and unbound magnesium ions in Escherichia coli. J Biol Chem. 1967 Aug 25;242(16):3719–3722. [PubMed] [Google Scholar]
  12. Khawja J. A., Stevens L. The effect of isolation conditions on the polyamine content of rat-liver microsomes. Biochem J. 1967 Sep;104(3):43P–43P. [PMC free article] [PubMed] [Google Scholar]
  13. LUBIN M., ENNIS H. L. ON THE ROLE OF INTRACELLULAR POTASSIUM IN PROTEIN SYNTHESIS. Biochim Biophys Acta. 1964 Apr 27;80:614–631. doi: 10.1016/0926-6550(64)90306-8. [DOI] [PubMed] [Google Scholar]
  14. Lusk J. E., Williams R. J., Kennedy E. P. Magnesium and the growth of Escherichia coli. J Biol Chem. 1968 May 25;243(10):2618–2624. [PubMed] [Google Scholar]
  15. Raina A., Cohen S. S. Polyamines and RNA synthesis in a polyauxotrophic strain of E. coli. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1587–1593. doi: 10.1073/pnas.55.6.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raina A., Telaranta T. Association of polyamines and RNA in isolated subcellular particles from rat liver. Biochim Biophys Acta. 1967 Mar 29;138(1):200–203. doi: 10.1016/0005-2787(67)90604-1. [DOI] [PubMed] [Google Scholar]
  17. Rogers G. T., Ulbricht T. L., Szer W. Interaction of polyuridylic acid and spermine. Biochem Biophys Res Commun. 1967 May 5;27(3):372–377. doi: 10.1016/s0006-291x(67)80109-8. [DOI] [PubMed] [Google Scholar]
  18. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stevens L., Morrison M. R. Studies on the role of polyamines associated with the ribosomes from Bacillus stearothermophilus. Biochem J. 1968 Jul;108(4):633–640. doi: 10.1042/bj1080633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tabor C. W., Kellogg P. D. The effect of isolation conditions on the polyamine content of Escherichia coli ribosomes. J Biol Chem. 1967 Mar 10;242(5):1044–1052. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES