Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 Oct;114(4):769–774. doi: 10.1042/bj1140769

A possible structure of the rabbit reticulocyte ribosome. An exercise in model building

R A Cox 1, Sophia A Bonanou 1
PMCID: PMC1184963  PMID: 5343780

Abstract

It is suggested that the location of each of the diverse ribosomal proteins in the ribosome, or in the ribosomal subparticles in their native or derived forms, is determined by the nucleotide sequence of the 16s and 23–30s RNA moieties, i.e. that the 16s and 23–30s RNA species provide a unique binding site for each species of ribosomal protein. The ways of assembling such a thread into a ribosome-like structure appear limited if the ribosome is largely stabilized by protein–protein interactions. The nucleoprotein thread was built into a structure, having the general features of a hollow cylinder, that is consistent with the known dimensions and properties of the rabbit reticulocyte ribosome. It appears possible to test the model by experiment.

Full text

PDF
770

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachvaroff R. J., Tongur V. 5S ribonucleic acid in ribosomes from mammalian tissues. Nature. 1966 Jul 16;211(5046):248–250. doi: 10.1038/211248a0. [DOI] [PubMed] [Google Scholar]
  2. Bohn T. S., Farnsworth R. K., Dibble W. E. Small-angle x-ray scattering studies of beef pancreas ribosomes. Biochim Biophys Acta. 1967 Mar 29;138(1):212–214. doi: 10.1016/0005-2787(67)90608-9. [DOI] [PubMed] [Google Scholar]
  3. Bonanou S., Cox R. A., Higginson B., Kanagalingam K. The production of biologically active subparticles from rabbit reticulocyte ribosomes. Biochem J. 1968 Nov;110(1):87–98. doi: 10.1042/bj1100087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brownlee G. G., Sanger F., Barrell B. G. The sequence of 5 s ribosomal ribonucleic acid. J Mol Biol. 1968 Jun 28;34(3):379–412. doi: 10.1016/0022-2836(68)90168-x. [DOI] [PubMed] [Google Scholar]
  5. COX R. A., ARNSTEIN H. R. THE ISOLATION, CHARACTERIZATION AND ACID-BASE PROPERTIES OF RIBONUCLEIC ACID FROM RABBIT-RETICULOCYTE RIBOSOMES. Biochem J. 1963 Dec;89:574–584. doi: 10.1042/bj0890574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CRICK F. H., WATSON J. D. Structure of small viruses. Nature. 1956 Mar 10;177(4506):473–475. doi: 10.1038/177473a0. [DOI] [PubMed] [Google Scholar]
  7. Choi Y. S., Carr C. W. Ion-binding studies of ribonucleic acid and Escherichia coli ribosomes. J Mol Biol. 1967 Apr 28;25(2):331–345. doi: 10.1016/0022-2836(67)90145-3. [DOI] [PubMed] [Google Scholar]
  8. Colombo B., Vesco C., Baglioni C. Role of ribosomal subunits in protein synthesis in mammalian cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):651–658. doi: 10.1073/pnas.61.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Comb D. G., Sarkar N. The binding of 5s ribosomal ribonucleic acid to ribosomal subunits. J Mol Biol. 1967 Apr 28;25(2):317–330. doi: 10.1016/0022-2836(67)90144-1. [DOI] [PubMed] [Google Scholar]
  10. Cox R. A. A study of the effects of reaction with formaldehyde on some optical and physical properties of reticulocyte ribosomes. Biochem J. 1969 Oct;114(4):743–751. doi: 10.1042/bj1140743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cox R. A., Gould H. J., Kanagalingam K. A study of the alkaline hydrolysis of fractionated reticulocyte ribosomal ribonucleic acid and its relevance to secondary structure. Biochem J. 1968 Feb;106(3):733–741. doi: 10.1042/bj1060733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cox R. A. The effect of pancreatic ribonuclease on rabbit reticulocyte ribosomes and its interpretation in terms of ribosome structure. Biochem J. 1969 Oct;114(4):753–767. doi: 10.1042/bj1140753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cox R. A. The secondary structure of ribosomal ribonucleic acid in solution. Biochem J. 1966 Mar;98(3):841–857. doi: 10.1042/bj0980841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DIBBLE W. E., DINTZIS H. M. The size and hydration of rabbit-reticulocyte ribosomes. Biochim Biophys Acta. 1960 Jan 1;37:152–153. doi: 10.1016/0006-3002(60)90093-7. [DOI] [PubMed] [Google Scholar]
  15. DIBBLE W. E. SMALL-ANGLE X-RAY SCATTERING STUDIES OF RABBIT RETICULOCYTE RIBOSOMES USING A BERREMAN-TYPE POINT-FOCUSING MONOCHROMATOR. J Ultrastruct Res. 1964 Oct;11:363–373. doi: 10.1016/s0022-5320(64)90039-5. [DOI] [PubMed] [Google Scholar]
  16. EDELMAN I. S., TS'O P. O., VINOGRAD J. The binding of magnesium to microsomal nucleoprotein and ribonucleic acid. Biochim Biophys Acta. 1960 Oct 7;43:393–403. doi: 10.1016/0006-3002(60)90464-9. [DOI] [PubMed] [Google Scholar]
  17. ENOUYE Z., SHINAGAWA Y., MASUMURA S. SEDIMENTATION CONSTANT-MOLECULAR WEIGHT RELATION OF RIBOSOMES. Nature. 1963 Sep 28;199:1290–1291. doi: 10.1038/1991290a0. [DOI] [PubMed] [Google Scholar]
  18. Fogel S., Sypherd P. S. Chemical basis for heterogeneity of ribosomal proteins. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1329–1336. doi: 10.1073/pnas.59.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Forget B. G., Weissman S. M. Nucleotide sequence of KB cell 5S RNA. Science. 1967 Dec 29;158(3809):1695–1699. doi: 10.1126/science.158.3809.1695. [DOI] [PubMed] [Google Scholar]
  20. Fuller W., Hodgson A. Conformation of the anticodon loop intRNA. Nature. 1967 Aug 19;215(5103):817–821. doi: 10.1038/215817a0. [DOI] [PubMed] [Google Scholar]
  21. Furano A. V., Bradley D. F., Childers L. G. The conformation of the ribonucleic acid in ribosomes. Dye stacking studies. Biochemistry. 1966 Sep;5(9):3044–3056. doi: 10.1021/bi00873a038. [DOI] [PubMed] [Google Scholar]
  22. Gavrilova L. P., Ivanov D. A., Spirin A. S. Studies on the structure of ribosomes. 3. Stepwise unfolding of the 50 s particles without loss of ribosomal protein. J Mol Biol. 1966 Apr;16(2):473–489. doi: 10.1016/s0022-2836(66)80186-9. [DOI] [PubMed] [Google Scholar]
  23. Gesteland R. F. Unfolding of Escherichia coli ribosomes by removal of magnesium. J Mol Biol. 1966 Jul;18(2):356–371. doi: 10.1016/s0022-2836(66)80253-x. [DOI] [PubMed] [Google Scholar]
  24. Ghosh H. P., Khorana H. G. Studies on polynucleotides, LXXXIV. On the role of ribosomal subunits in protein synthesis. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2455–2461. doi: 10.1073/pnas.58.6.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hamilton M. G., Ruth M. E. Characterization of some of the proteins of the large subunit of rat liver ribosomes. Biochemistry. 1967 Aug;6(8):2585–2590. doi: 10.1021/bi00860a041. [DOI] [PubMed] [Google Scholar]
  26. Kaempfer R. O., Meselson M., Raskas H. J. Cyclic dissociation into stable subunits and re-formation of ribosomes during bacterial growth. J Mol Biol. 1968 Jan 28;31(2):277–289. doi: 10.1016/0022-2836(68)90444-0. [DOI] [PubMed] [Google Scholar]
  27. Kaempfer R., Meselson M. Permanent association of 5 s RNA molecules with 50 s ribosomal subunits in growing bacteria. J Mol Biol. 1968 Jun 28;34(3):703–707. doi: 10.1016/0022-2836(68)90191-5. [DOI] [PubMed] [Google Scholar]
  28. LANGRIDGE R. Ribosomes: a common structural feature. Science. 1963 May 31;140(3570):1000–1000. doi: 10.1126/science.140.3570.1000. [DOI] [PubMed] [Google Scholar]
  29. Low R. B., Wool I. G. Mammalian ribosomal protein: analysis by electrophoresis on polyacrylamide gel. Science. 1967 Jan 20;155(3760):330–332. doi: 10.1126/science.155.3760.330. [DOI] [PubMed] [Google Scholar]
  30. MATHIAS A. P., WILLIAMSON R., HUXLEY H. E., PAGE S. OCCURRENCE AND FUNCTION OF POLYSOMES IN RABBIT RETICULOCYTES. J Mol Biol. 1964 Jul;9:154–167. doi: 10.1016/s0022-2836(64)80097-8. [DOI] [PubMed] [Google Scholar]
  31. Malkin L. I., Rich A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J Mol Biol. 1967 Jun 14;26(2):329–346. doi: 10.1016/0022-2836(67)90301-4. [DOI] [PubMed] [Google Scholar]
  32. Miall S. H., Walker I. O. Structural studies on ribosomes. I. The binding of proflavine to Escherichia coli ribosomes. Biochim Biophys Acta. 1967 Aug 22;145(1):82–95. [PubMed] [Google Scholar]
  33. Moore P. B., Traut R. R., Noller H., Pearson P., Delius H. Ribosomal proteins of Escherichia coli. II. Proteins from the 30 s subunit. J Mol Biol. 1968 Feb 14;31(3):441–461. doi: 10.1016/0022-2836(68)90420-8. [DOI] [PubMed] [Google Scholar]
  34. Morell P., Marmur J. Association of 5S ribonucleic acid to 50S ribosomal subunits of Escherichia coli and Bacillus subtilis. Biochemistry. 1968 Mar;7(3):1141–1152. doi: 10.1021/bi00843a035. [DOI] [PubMed] [Google Scholar]
  35. Möller W., Chrambach A. Physical heterogeneity of the ribosomal proteins from Escherichia coli. J Mol Biol. 1967 Feb 14;23(3):377–390. doi: 10.1016/s0022-2836(67)80112-8. [DOI] [PubMed] [Google Scholar]
  36. Nanninga N. Fine structure observed in 50S ribosomal subunits of Bacillus subtilis. J Cell Biol. 1967 May;33(2):C1–C6. doi: 10.1083/jcb.33.2.c1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nanninga N. The conformation of the 50S ribosomal subunit of Bacillus subtilis. Proc Natl Acad Sci U S A. 1968 Oct;61(2):614–620. doi: 10.1073/pnas.61.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nomura M., Traub P. Structure and function of Escherichia coli ribosomes. 3. Stoichiometry and rate of the reconstitution of ribosomes from subribosomal particles and split proteins. J Mol Biol. 1968 Jun 28;34(3):609–619. doi: 10.1016/0022-2836(68)90184-8. [DOI] [PubMed] [Google Scholar]
  39. Petermann M. L., Pavlovec A. Effects of magnesium and formaldehyde on the sedimentation behavior of rat liver ribosomes. Biopolymers. 1969;7(1):73–81. doi: 10.1002/bip.1969.360070107. [DOI] [PubMed] [Google Scholar]
  40. Redman C. M., Sabatini D. D. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):608–615. doi: 10.1073/pnas.56.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sabatini D. D., Tashiro Y., Palade G. E. On the attachment of ribosomes to microsomal membranes. J Mol Biol. 1966 Aug;19(2):503–524. doi: 10.1016/s0022-2836(66)80019-0. [DOI] [PubMed] [Google Scholar]
  42. Sheard B., Miall S. H., Peacocke A. R., Walker I. O., Richards R. E. Proton magnetic relaxation studies of the binding of manganese ions to Escherichia coli ribosomes. J Mol Biol. 1967 Sep 28;28(3):389–402. doi: 10.1016/s0022-2836(67)80088-3. [DOI] [PubMed] [Google Scholar]
  43. TAKANAMI M., ZUBAY G. AN ESTIMATE OF THE SIZE OF THE RIBOSOMAL SITE FOR MESSENGER RNA BINDING. Proc Natl Acad Sci U S A. 1964 May;51:834–839. doi: 10.1073/pnas.51.5.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Takanami M., Yan Y., Jukes T. H. Studies on the site of ribosomal binding of f2 bacteriophage RNA. J Mol Biol. 1965 Jul;12(3):761–773. doi: 10.1016/s0022-2836(65)80325-4. [DOI] [PubMed] [Google Scholar]
  45. Worcel A., Goldman D. S., Sachs I. B. Properties and fine structure of the ribosomes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1968 Sep;61(1):122–129. doi: 10.1073/pnas.61.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES