Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Feb;116(4):581–585. doi: 10.1042/bj1160581

Comparative studies of bile salts. 5α-Chimaerol, a new bile alcohol from the white sucker Catostomus commersoni Lacépède

I G Anderson 1, G A D Haslewood 1
PMCID: PMC1185402  PMID: 5435487

Abstract

1. G.l.c. examination of bile alcohols prepared from the sucker Catostomus commersoni Lacépède (family Catostomidae) showed that although 5α-cyprinol (5α-cholestane-3α,7α,12α,26,27-pentol) was a minor constituent, the principal bile alcohol was an undescribed substance, probably present in the bile as the C-26 sulphate ester, whose i.r., n.m.r. and mass spectra agreed with the structure 5α-cholestane-3α,7α,12α,24,26-pentol. 2. MD studies suggest that this 5α-chimaerol is the 24(+), 25S enantiomer and that 5β-chimaerol (chimaerol) from Chimaera monstrosa bile also has the 24(+), 25S configuration. These findings imply that bile alcohol biosynthesis in suckers and chimaeras includes stereospecific oxidation of cholesterol at C-26. 3. C. commersoni bile acids (present in minor amounts) probably consist largely of 3α,7α,12α-trihydroxy-5α-cholan-24-oic acid (allocholic acid). 4. 5α-Chimaerol sulphate and 5α-cyprinol sulphate are probably biochemically equivalent as bile salts, and can be considered as arising by parallel evolution.

Full text

PDF
585

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRIDGWATER R. J., BRIGGS T., HASLEWOOD G. A. Comparative studies of 'bile salts'. 14. Isolation from shark bile and partial synthesis of scymnol. Biochem J. 1962 Feb;82:285–290. doi: 10.1042/bj0820285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRIDGWATER R. J., HASLEWOOD G. A., WATT J. R. Comparative studies on 'bile salts'. 17. A bile alcohol from Chimaera monstrosa. Biochem J. 1963 Apr;87:28–31. doi: 10.1042/bj0870028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRIDGWATER R. J. Partial synthesis of the two 3alpha:7alpha:12alpha-trihydroxycoprostanic acids and of similar bile acids with extended chains. Biochem J. 1956 Dec;64(4):593–599. doi: 10.1042/bj0640593a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks K., Clark A. J. Behavior of lambda bacteriophage in a recombination deficienct strain of Escherichia coli. J Virol. 1967 Apr;1(2):283–293. doi: 10.1128/jvi.1.2.283-293.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HASLEWOOD G. A. A bile alcohol from Cyprinidae. Biochem J. 1954 Dec 17;59(335TH):xi–xi. [PubMed] [Google Scholar]
  6. HASLEWOOD G. A. THE BIOLOGICAL SIGNIFICANCE OF CHEMICAL DIFFERENCES IN BILE SALTS. Biol Rev Camb Philos Soc. 1964 Nov;39:537–574. doi: 10.1111/j.1469-185x.1964.tb01170.x. [DOI] [PubMed] [Google Scholar]
  7. Haslewood G. A., Tammar A. R. Comparative studies of bile salts. Bile salts of sturgeons (Acipenseridae) and of the paddlefish Polyodon spathula: a new partial synthesis of 5 beta-cyprinol. Biochem J. 1968 Jun;108(2):263–268. doi: 10.1042/bj1080263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Masui T., Staple E. The separation of the stereo-isomers of bile steroids, 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha, 24-alpha-tetrol and 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha, 24-beta-tetrol, by thin layer chromatography. Steroids. 1967 Apr;9(4):443–450. doi: 10.1016/0039-128x(67)90031-1. [DOI] [PubMed] [Google Scholar]
  9. Mitra M. N., Elliott W. H. Bile acids. 23. A new direct synthesis of allocholic acid and its 3 beta isomer. J Org Chem. 1968 Jan;33(1):175–181. doi: 10.1021/jo01265a033. [DOI] [PubMed] [Google Scholar]
  10. Shah P. P., Staple E., Rabinowitz J. L. Trihydroxycoprostanic acid from crocodilians. Arch Biochem Biophys. 1968 Feb;123(2):427–428. doi: 10.1016/0003-9861(68)90158-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES