Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Apr 15;172(1):57–62. doi: 10.1042/bj1720057

Studies on the orientation of brush-border membrane vesicles.

W Haase, A Schäfer, H Murer, R Kinne
PMCID: PMC1185661  PMID: 656075

Abstract

Orientation of rat renal and intestinal brush-border membrane vesicles was studied with two independent methods: electron-microscopic freeze-fracture technique and immunological methods. With the freeze-fracture technique a distinct asymmetric distribution of particles on the two membrane fracture faces was demonstrated; this was used as a criterion for orientation of the isolated membrane vesicles. For the immunological approach the accessibility or inaccessibility of aminopeptidase M localized on the outer surface of the cell membrane to antibodies was used. With both methods we showed that the brush-border membrane vesicles isolated from rat kidney cortex and from rat small intestine for transport studies are predominantly orientated right-side out.

Full text

PDF
58-2

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altendorf K. H., Staehelin L. A. Orientation of membrane vesicles from Escherichia coli as detected by freeze-cleave electron microscopy. J Bacteriol. 1974 Feb;117(2):888–899. doi: 10.1128/jb.117.2.888-899.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berner W., Kinne R. Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflugers Arch. 1976 Feb 24;361(3):269–277. doi: 10.1007/BF00587292. [DOI] [PubMed] [Google Scholar]
  3. Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Booth A. G., Kenny A. J. Proteins of the kidney microvillus membrane. Identification of subunits after sodium dodecylsullphate/polyacrylamide-gel electrophoresis. Biochem J. 1976 Nov;159(2):395–407. doi: 10.1042/bj1590395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emmelot P., Visser A., Benedetti E. L. Studies on plasma membranes. VII. A leucyl-beta-naphthylamidase-containing repeating unit on the surface of isolated liver and hepatoma plasma membranes. Biochim Biophys Acta. 1968 Apr 29;150(3):364–375. doi: 10.1016/0005-2736(68)90135-1. [DOI] [PubMed] [Google Scholar]
  6. Heidrich H. G., Kinne R., Kinne-Saffran E., Hannig K. The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings. J Cell Biol. 1972 Aug;54(2):232–245. doi: 10.1083/jcb.54.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
  8. Louvard D., Maroux S., Desnuelle P. Topological studies on the hydrolases bound to the intestinal brush border membrane. II. Interactions of free and bound aminopeptidase with a specific antibody. Biochim Biophys Acta. 1975 May 6;389(2):389–400. doi: 10.1016/0005-2736(75)90331-4. [DOI] [PubMed] [Google Scholar]
  9. Louvard D., Semeriva M., Maroux S. The brush-border intestinal aminopeptidase, a transmembrane protein as probed by macromolecular photolabelling. J Mol Biol. 1976 Oct 5;106(4):1023–1035. doi: 10.1016/0022-2836(76)90350-8. [DOI] [PubMed] [Google Scholar]
  10. Schachter D., Shinitzky M. Fluorescence polarization studies of rat intestinal microvillus membranes. J Clin Invest. 1977 Mar;59(3):536–548. doi: 10.1172/JCI108669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schmitz J., Preiser H., Maestracci D., Ghosh B. K., Cerda J. J., Crane R. K. Purification of the human intestinal brush border membrane. Biochim Biophys Acta. 1973 Sep 27;323(1):98–112. doi: 10.1016/0005-2736(73)90434-3. [DOI] [PubMed] [Google Scholar]
  12. Sigrist-Nelson K., Murer H., Hopfer U. Active alanine transport in isolated brush border membranes. J Biol Chem. 1975 Jul 25;250(14):5674–5680. [PubMed] [Google Scholar]
  13. Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
  14. Thomas L., Kinne R. Studies on the arrangement of aminopeptidase and alkaline phosphatase in the microvilli of isolated brush border of rat kidney. Biochim Biophys Acta. 1972 Jan 17;255(1):114–125. doi: 10.1016/0005-2736(72)90013-2. [DOI] [PubMed] [Google Scholar]
  15. Walter H. Tightness and orientation of vesicles from guinea-pig kidney estimated from reactions of adenosine triphosphatase dependent on sodium and potassium ions. Eur J Biochem. 1975 Oct 15;58(2):595–601. doi: 10.1111/j.1432-1033.1975.tb02410.x. [DOI] [PubMed] [Google Scholar]
  16. Zwaal R. F., Roelofsen B., Colley C. M. Localization of red cell membrane constituents. Biochim Biophys Acta. 1973 Sep 10;300(2):159–182. doi: 10.1016/0304-4157(73)90003-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES