Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Sep 15;174(3):965–977. doi: 10.1042/bj1740965

Activities and some properties of 5'-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine.

J R Arch, E A Newsholme
PMCID: PMC1186002  PMID: 215126

Abstract

1. The maximal activities of 5'-nucleotidase, adenosine kinase and adenosine deaminase together with the Km values for their respective substrates were measured in muscle, nervous tissue and liver from a large range of animals to provide information on the mechanism of control of adenosine concentration in the tissues. 2. Detailed evidence that the methods used were optimal for the extraction and assay of these enzymes has been deposited as Supplementary Publication SUP 50088 (16pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K.,from whom copies can be obtained on the terms indicated in Biochem. J. (1978), 169, 5. This evidence includes the effects of pH and temperature on the activities of the enzymes. 3. In many tissues, the activities of 5'-nucleotidase were considerably higher than the sum of the activities of adenosine kinase and deaminase, which suggests that the activity of the nucleotidase must be markedly inhibited in vivo so that adenosine does not accumulate. In the tissues in which comparison is possible, the Km of the nucleotidase is higher than the AMP content of the tissue, and since some of the latter may be bound within the cell, the low concentration of substrate may, in part, be responsible for a low activity in vivo. 4. In most tissues and animals investigated, the values of the Km of adenosine kinase for adenosine are between one and two orders of magnitude lower than those for the deaminase. It is suggested that 5'-nucleotidase and adenosine kinase are simultaneously active so that a substrate cycle between AMP and adenosine is produced: the difference in Km values between kinase and deaminase indicates that, via the cycle, small changes in activity of kinase or nucleotidase produce large changes in adenosine concentration. 5. The activities of adenosine kinase or deaminase from vertebrate muscles are inversely correlated with the activities of phosphorylase in these muscles. Since the magnitude of the latter activities are indicative of the anaerobic nature of muscles, this negative correlation supports the hypothesis that an important role of adenosine is the regulation of blood flow in the aerobic muscles.

Full text

PDF
968

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arch J. R., Newsholme E. A. Activities and some properties of adenylate cyclase and phosphodiesterase in muscle, liver and nervous tissues from vertebrates and invertebrates in relation to the control of the concentration of adenosine 3':5'-cyclic monophosphate. Biochem J. 1976 Sep 15;158(3):603–622. doi: 10.1042/bj1580603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRADY T. G., O'DONOVAN C. I. A STUDY OF THE TISSUE DISTRIBUTION OF ADENOSINE DEAMINASE IN SIX MAMMAL SPECIES. Comp Biochem Physiol. 1965 Jan;14:101–120. doi: 10.1016/0010-406x(65)90011-3. [DOI] [PubMed] [Google Scholar]
  3. BULLOUGH J. Protracted foetal and neonatal asphyxia. Lancet. 1958 May 10;1(7028):999–1000. doi: 10.1016/s0140-6736(58)91803-8. [DOI] [PubMed] [Google Scholar]
  4. Baer H. P., Drummond G. I., Duncan E. L. Formation and deamination of adenosine by cardiac muscle enzymes. Mol Pharmacol. 1966 Jan;2(1):67–76. [PubMed] [Google Scholar]
  5. Beis I., Newsholme E. A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem J. 1975 Oct;152(1):23–32. doi: 10.1042/bj1520023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berne R. M., Rubio R. Adenine nucleotide metabolism in the heart. Circ Res. 1974 Sep;35 (Suppl 3):109–120. [PubMed] [Google Scholar]
  7. Berne R. M., Rubio R., Dobson J. G., Jr, Curnish R. R. Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation. Circ Res. 1971 Jan;28(Suppl):115+–115+. [PubMed] [Google Scholar]
  8. Bockman E. L., Berne R. M., Rubio R. Adenosine and active hyperemia in dog skeletal muscle. Am J Physiol. 1976 Jun;230(6):1531–1537. doi: 10.1152/ajplegacy.1976.230.6.1531. [DOI] [PubMed] [Google Scholar]
  9. Bockman E. L., Berne R. M., Rubio R. Release of adenosine and lack of release of ATP from contracting skeletal muscle. Pflugers Arch. 1975 Mar 26;355(3):229–241. doi: 10.1007/BF00583686. [DOI] [PubMed] [Google Scholar]
  10. Bosmann H. B., Pike G. Z. Membrane marker enzymes: isolation, purification, and properties of 5'-nucleotidase from rat cerebellum. Biochim Biophys Acta. 1971 Feb 10;227(2):402–412. doi: 10.1016/0005-2744(71)90071-4. [DOI] [PubMed] [Google Scholar]
  11. Caldwell I. C., Henderson J. F., Paterson A. R. The enzymic formation of 6-(methylmercapto)purine ribonucleoside 5'-phosphate. Can J Biochem. 1966 Feb;44(2):229–245. doi: 10.1139/o66-027. [DOI] [PubMed] [Google Scholar]
  12. Crabtree B., Newsholme E. A. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates. Biochem J. 1972 Jan;126(1):49–58. doi: 10.1042/bj1260049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crabtree B. Theoretical considerations of the sensitivity conferred by substrate cycles in vivo. Biochem Soc Trans. 1976;4(6):999–1002. doi: 10.1042/bst0040999a. [DOI] [PubMed] [Google Scholar]
  14. Daly J. W. The nature of receptors regulating the formation of cyclic AMP in brain tissue. Life Sci. 1976 Jun 15;18(12):1349–1358. doi: 10.1016/0024-3205(76)90350-7. [DOI] [PubMed] [Google Scholar]
  15. Divekar A. Y., Hakala M. T. Adenosine kinase of sarcoma 180 cells N 6 -substituted adenosines as substrates and inhibitors. Mol Pharmacol. 1971 Nov;7(6):663–673. [PubMed] [Google Scholar]
  16. Elbers R., Heldt H. W., Schmucker P., Soboll S., Wiese H. Measurement of the ATP/ADP ratio in mitochondria and in the extramitochondrial compartment by fractionation of freeze-stopped liver tissue in non-aqueous media. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):378–393. doi: 10.1515/bchm2.1974.355.1.378. [DOI] [PubMed] [Google Scholar]
  17. Fain J. N., Wieser P. B. Effects of adenosine deaminase on cyclic adenosine monophosphate accumulation, lipolysis, and glucose metabolism of fat cells. J Biol Chem. 1975 Feb 10;250(3):1027–1034. [PubMed] [Google Scholar]
  18. Faupel R. P., Seitz H. J., Tarnowski W., Thiemann V., Weiss C. The problem of tissue sampling from experimental animals with respect to freezing technique, anoxia, stress and narcosis. A new method for sampling rat liver tissue and the physiological values of glycolytic intermediates and related compounds. Arch Biochem Biophys. 1972 Feb;148(2):509–522. doi: 10.1016/0003-9861(72)90170-1. [DOI] [PubMed] [Google Scholar]
  19. Ferreira S. H., Vane J. R. Prostaglandins: their disappearance from and release into the circulation. Nature. 1967 Dec 2;216(5118):868–873. doi: 10.1038/216868a0. [DOI] [PubMed] [Google Scholar]
  20. Frick G. P., Lowenstein J. M. Studies of 5'-nucleotidase in the perfused rat heart. Including measurements of the enzyme in perfused skeletal muscle and liver. J Biol Chem. 1976 Oct 25;251(20):6372–6378. [PubMed] [Google Scholar]
  21. Gibson W. B., Drummond G. I. Properties of 5'-nucleotidase from avian heart. Biochemistry. 1972 Jan 18;11(2):223–229. doi: 10.1021/bi00752a013. [DOI] [PubMed] [Google Scholar]
  22. Gillis C. N., Roth J. A. Pulmonary disposition of circulating vasoactive hormones. Biochem Pharmacol. 1976 Dec 1;25(23):2547–2553. doi: 10.1016/0006-2952(76)90508-6. [DOI] [PubMed] [Google Scholar]
  23. Gorin E., Brenner T. Extracellular metabolism of cyclic AMP. Biochim Biophys Acta. 1976 Nov 18;451(1):20–28. doi: 10.1016/0304-4165(76)90253-1. [DOI] [PubMed] [Google Scholar]
  24. HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
  25. Ipata P. L. Sheep brain 5'-nucleotidase. Some enzymic properties and allosteric inhibition by nucleoside triphosphates. Biochemistry. 1968 Feb;7(2):507–515. doi: 10.1021/bi00842a004. [DOI] [PubMed] [Google Scholar]
  26. Kluge H., Hartmann W., Wieczorek V., Zahlten W. Kinetic properties of cerebral 5'-nucleotidase. J Neurochem. 1972 May;19(5):1409–1411. doi: 10.1111/j.1471-4159.1972.tb01468.x. [DOI] [PubMed] [Google Scholar]
  27. Kohn M. C., Achs M. J., Garfinkel D. Distribution of adenine nucleotides in the perfused rat heart. Am J Physiol. 1977 May;232(5):R158–R163. doi: 10.1152/ajpregu.1977.232.5.R158. [DOI] [PubMed] [Google Scholar]
  28. Krebs H. A. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 1972;8:1–34. [PubMed] [Google Scholar]
  29. Kuroda Y., Saito M., Kobayashi K. Concomitant changes in cyclic AMP level and postsynaptic potentials of olfactory cortex slices induced by adenosine derivatives. Brain Res. 1976 Jun 4;109(1):196–201. doi: 10.1016/0006-8993(76)90393-0. [DOI] [PubMed] [Google Scholar]
  30. LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
  31. Liu M. S., Feinberg H. Incorporation of adenosine-8-14/C and inosine-8-14C into rabbit heart adenine nucleotides. Am J Physiol. 1971 May;220(5):1242–1248. doi: 10.1152/ajplegacy.1971.220.5.1242. [DOI] [PubMed] [Google Scholar]
  32. MOTT J. C. The ability of young mammals to withstand total oxygen lack. Br Med Bull. 1961 May;17:144–148. doi: 10.1093/oxfordjournals.bmb.a069889. [DOI] [PubMed] [Google Scholar]
  33. Mentzer R. M., Jr, Rubio R., Berne R. M. Release of adenosine by hypoxic canine lung tissue and its possible role in pulmonary circulation. Am J Physiol. 1975 Dec;229(6):1625–1631. doi: 10.1152/ajplegacy.1975.229.6.1625. [DOI] [PubMed] [Google Scholar]
  34. Meyskens F. L., Williams H. E. Adenosine metabolism in human erythrocytes. Biochim Biophys Acta. 1971 Jun 30;240(2):170–179. doi: 10.1016/0005-2787(71)90654-x. [DOI] [PubMed] [Google Scholar]
  35. Murray A. W., Elliott D. C., Atkinson M. R. Nucleotide biosynthesis from preformed purines in mammalian cells: regulatory mechanisms and biological significance. Prog Nucleic Acid Res Mol Biol. 1970;10:87–119. doi: 10.1016/s0079-6603(08)60562-0. [DOI] [PubMed] [Google Scholar]
  36. Mustafa S. J., Rubio R., Berne R. M. Uptake of adenosine by dispersed chich embryonic cardiac cells. Am J Physiol. 1975 Jan;228(1):62–67. doi: 10.1152/ajplegacy.1975.228.1.62. [DOI] [PubMed] [Google Scholar]
  37. Nakatsu K., Drummond G. I. Adenylate metabolism and adenosine formation in the heart. Am J Physiol. 1972 Nov;223(5):1119–1127. doi: 10.1152/ajplegacy.1972.223.5.1119. [DOI] [PubMed] [Google Scholar]
  38. Newby A. C., Luzio J. P., Hales C. N. The properties and extracellular location of 5'-nucleotidase of the rat fat-cell plasma membrane. Biochem J. 1975 Mar;146(3):625–633. doi: 10.1042/bj1460625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Newman M., McIlwain H. Adenosine as a constituent of the brain and of isolated cerebral tissues, and its relationship to the generation of adenosine 3':5'-cyclic monophosphate. Biochem J. 1977 Apr 15;164(1):131–137. doi: 10.1042/bj1640131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Newsholme E. A., Crabtree B. Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp. 1976;(41):61–109. [PubMed] [Google Scholar]
  41. Newsholme E. A., Taylor K. Glycerol kinase activities in muscles from vertebrates and invertebrates. Biochem J. 1969 May;112(4):465–474. doi: 10.1042/bj1120465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Opie L. H., Mansford K. R., Owen P. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem J. 1971 Sep;124(3):475–490. doi: 10.1042/bj1240475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Parks R. E., Jr, Crabtree G. W., Kong C. M., Agarwal R. P., Agarwal K. C., Scholar E. M. Incorporation of analog purine nucleosides into the formed elements of human blood: erythrocytes, platelets, and lymphocytes. Ann N Y Acad Sci. 1975 Aug 8;255:412–434. doi: 10.1111/j.1749-6632.1975.tb29249.x. [DOI] [PubMed] [Google Scholar]
  44. Pfleger K., Seifen E., Schöndorf H. Potenzierung der Adenosinwirkung am Herzen durch Inosin. Biochem Pharmacol. 1969 Jan;18(1):43–51. doi: 10.1016/0006-2952(69)90007-0. [DOI] [PubMed] [Google Scholar]
  45. Phillis J. W., Edstrom J. P. Effects of adenosine analogs on rat cerebral cortical neurons. Life Sci. 1976 Oct 1;19(7):1041–1053. doi: 10.1016/0024-3205(76)90296-4. [DOI] [PubMed] [Google Scholar]
  46. Pull I., McIlwain H. Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation of superfused cerebral tissues. Biochem J. 1972 Dec;130(4):975–981. doi: 10.1042/bj1300975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Riemer B. L., Widnell C. C. The demonstration of a specific 5'-nucleotidase activity in rat tissues. Arch Biochem Biophys. 1975 Nov;171(1):343–347. doi: 10.1016/0003-9861(75)90041-7. [DOI] [PubMed] [Google Scholar]
  48. Rubio R., Berne R. M., Bockman E. L., CURNISH R. R. Relationship between adenosine concentration and oxygen supply in rat brain. Am J Physiol. 1975 Jun;228(6):1896–1902. doi: 10.1152/ajplegacy.1975.228.6.1896. [DOI] [PubMed] [Google Scholar]
  49. Rubio R., Berne R. M., Dobson J. G., Jr Sites of adenosine production in cardiac and skeletal muscle. Am J Physiol. 1973 Oct;225(4):938–953. doi: 10.1152/ajplegacy.1973.225.4.938. [DOI] [PubMed] [Google Scholar]
  50. Santos J. N., Hempstead K. W., Kopp L. E., Miech R. P. Nucleotide metabolism in rat brain. J Neurochem. 1968 May;15(5):367–376. doi: 10.1111/j.1471-4159.1968.tb11623.x. [DOI] [PubMed] [Google Scholar]
  51. Schnebli H. P., Hill D. L., Bennett L. L., Jr Purification and properties of adenosine kinase from human tumor cells of type H. Ep. No. 2. J Biol Chem. 1967 May 10;242(9):1997–2004. [PubMed] [Google Scholar]
  52. Schrader J., Berne R. M., Rubio R. Uptake and metabolism of adenosine by human erythrocyte ghosts. Am J Physiol. 1972 Jul;223(1):159–166. doi: 10.1152/ajplegacy.1972.223.1.159. [DOI] [PubMed] [Google Scholar]
  53. Schubert P., Lee K., West M., Deadwyler S., Lynch G. Stimulation-dependent release of 3H-adenosine derivatives from central axon terminals to target neurones. Nature. 1976 Apr 8;260(5551):541–542. doi: 10.1038/260541a0. [DOI] [PubMed] [Google Scholar]
  54. Schwabe U., Ebert R., Erbler H. C. Adenosine release from fat cells: effect on cyclic AMP levels and hormone actions. Adv Cyclic Nucleotide Res. 1975;5:569–584. [PubMed] [Google Scholar]
  55. Shimizu H., Tanaka S., Kodama T. Adenosine kinase of mammalian brain: partial purification and its role for the uptake of adenosine. J Neurochem. 1972 Mar;19(3):687–698. doi: 10.1111/j.1471-4159.1972.tb01384.x. [DOI] [PubMed] [Google Scholar]
  56. Sugden P. H., Newsholme E. A. Activities of hexokinase, phosphofructokinase, 3-oxo acid coenzyme A-transferase and acetoacetyl-coenzyme A thiolase in nervous tissue from vertebrates and invertebrates. Biochem J. 1973 May;134(1):97–101. doi: 10.1042/bj1340097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sullivan J. M., Alpers J. B. In vitro regulation of rat heart 5'-nucleotidase by adenine nucleotides and magnesium. J Biol Chem. 1971 May 10;246(9):3057–3063. [PubMed] [Google Scholar]
  58. Trams E. G., Lauter C. J. On the sidedness of plasma membrane enzymes. Biochim Biophys Acta. 1974 Apr 29;345(2):180–197. doi: 10.1016/0005-2736(74)90257-0. [DOI] [PubMed] [Google Scholar]
  59. Veech R. L., Harris R. L., Veloso D., Veech E. H. Freeze-blowing: a new technique for the study of brain in vivo. J Neurochem. 1973 Jan;20(1):183–188. doi: 10.1111/j.1471-4159.1973.tb12115.x. [DOI] [PubMed] [Google Scholar]
  60. Woo Y. T., Manery J. F., Riordan J. R., Dryden E. E. Uptake and metabolism of purine nucleosides and nucleotides in isolated frog skeletal muscle. Life Sci. 1977 Sep 15;21(6):861–876. doi: 10.1016/0024-3205(77)90416-7. [DOI] [PubMed] [Google Scholar]
  61. de Jong J. W., Kalkman C. Myocardial adenosine kinase: activity and localization determined with rapid, radiometric assay. Biochim Biophys Acta. 1973 Sep 14;320(2):388–396. doi: 10.1016/0304-4165(73)90320-6. [DOI] [PubMed] [Google Scholar]
  62. van den Berghe G., van Pottelsberghe C., Hers H. G. A kinetic study of the soluble 5'-nucleotidase of rat liver. Biochem J. 1977 Mar 15;162(3):611–616. doi: 10.1042/bj1620611. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES