Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Dec 1;175(3):1113–1118. doi: 10.1042/bj1751113

Interactions of gangliosides with phospholipids and glycosphingolipids in mixed monolayers.

B Maggio, F A Cumar, R Caputto
PMCID: PMC1186174  PMID: 743230

Abstract

1. The interactions among five different gangliosides and three chemically related glycosphingolipids and their behaviour in mixed monolayers with six different phospholipids were investigated at the air/145 mM-NaCl interface at pH 5.6. 2. The mixed monolayers of any of the different gangliosides showed an immiscible behaviour at high surface pressures, with absence of interactions among them revealed by an ideal behaviour for mean molecular area and surface potential per molecule. 3. This behaviour was probably the consequence of steric hindrance and electrostatic repulsions between their polar head groups. 4. Di- and tri-sialogangliosides could be differentiated from neutral sphingolipids and monosialogangliosides on the basis of their interactions with phospholipids, which were correlated to the perpendicular electric field at the interface contributed by the carbohydrate residues. 5. The presence of the phosphocholine polar head group in phosphatidylcholine was important to establish interactions with di- and tri-sialogangliosides revealed by negative deviations from the ideal behaviour for mean molecular areas and mean surface potential per molecule. 6. The possible significance of these observations is discussed in relation to the participation of gangliosides in the organization of membranes and to their capability of inducing membrane fusion.

Full text

PDF
1115

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. The fusion of erythrocytes by fatty acids, esters, retinol and alpha-tocopherol. Biochem J. 1973 Sep;136(1):147–155. doi: 10.1042/bj1360147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hill M. W., Lester R. Mixtures of gangliosides and phosphatidylcholine in aqueous dispersions. Biochim Biophys Acta. 1972 Sep 1;282(1):18–30. doi: 10.1016/0005-2736(72)90307-0. [DOI] [PubMed] [Google Scholar]
  3. Israelachvili J. N., Mitchell D. J., Ninham B. W. Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta. 1977 Oct 17;470(2):185–201. doi: 10.1016/0005-2736(77)90099-2. [DOI] [PubMed] [Google Scholar]
  4. Klein R. A. The detection of oxidation in liposome preparations. Biochim Biophys Acta. 1970 Sep 8;210(3):486–489. doi: 10.1016/0005-2760(70)90046-9. [DOI] [PubMed] [Google Scholar]
  5. Maggio B., Ahkong Q. F., Lucy J. A. Poly(ethylene glycol), surface potential and cell fusion. Biochem J. 1976 Sep 15;158(3):647–650. doi: 10.1042/bj1580647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Maggio B., Cumar F. A., Caputto R. Induction of membrane fusion by polysialogangliosides. FEBS Lett. 1978 Jun 1;90(1):149–152. doi: 10.1016/0014-5793(78)80318-4. [DOI] [PubMed] [Google Scholar]
  7. Maggio B., Cumar F. A., Caputto R. Surface behaviour of gangliosides and related glycosphingolipids. Biochem J. 1978 Jun 1;171(3):559–565. doi: 10.1042/bj1710559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maggio B., Lucy J. A. Interactions with phospholipid monolayers of lipids and water-soluble compounds that induce membrane fusion. Adv Exp Med Biol. 1977;83:225–231. doi: 10.1007/978-1-4684-3276-3_20. [DOI] [PubMed] [Google Scholar]
  9. Maggio B., Lucy J. A. Polar-group behaviour in mixed monolayers of phospholipids and fusogenic lipids. Biochem J. 1976 May 1;155(2):353–364. doi: 10.1042/bj1550353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maggio B., Lucy J. A. Studies on mixed monolayers of phospholipids and fusogenic lipids. Biochem J. 1975 Sep;149(3):597–608. doi: 10.1042/bj1490597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maggio B., Mestrallet M. G., Cumar F. A., Caputto R. Glucose release from liposomes containing gangliosides or other membrane lipids induced by biogenic amines and myelin basic protein. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1265–1272. doi: 10.1016/s0006-291x(77)80116-2. [DOI] [PubMed] [Google Scholar]
  12. SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES