Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Oct 15;176(1):83–95. doi: 10.1042/bj1760083

Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP.

R J Haslam, M M Davidson, J V Desjardins
PMCID: PMC1186207  PMID: 215136

Abstract

Whereas adenosine itself exerted independent stimulatory and inhibitory effects on the adenylate cyclase activity of a platelet particulate fraction at low and high concentrations respectively, 2-substituted and N6-monosubstituted adenosines had stimulatory but greatly decreased inhibitory effects. Deoxyadenosines, on the other hand, had enhanced inhibitory but no stimulatory effects. The most potent inhibitors found were, in order of increasing activity, 9-(tetrahydro-2-furyl)adenine (SQ 22536), 2',5'-dideoxyadenosine and 2'-deoxyadenosine 3'-monophosphate. Kinetic studies on prostaglandin E1-activated adenylate cyclase showed that the inhibition caused by either 2',5'-dideoxyadenosine or compound SQ 22536 was non-competitive with MgATP and that the former compound, at least, showed negative co-operativity; 50% inhibition was observed with 4 micron-2',5'-dideoxyadenosine or 13 micron-SQ 22536. These two compounds also inhibited both the basal and prostaglandin E1-activated adenylate cyclase activities of intact platelets, when these were measured as the increases in cyclic [3H]AMP in platelets that had been labelled with [3H]adenine and were then incubated briefly with papaverine or papaverine and prostaglandin E1. Both compounds, but particularly 2',5'-dideoxyadenosine, markedly decreased the inhibition by prostaglandin E1 of platelet aggregation induced by ADP or [arginine]vasopressin as well as the associated increases in platelet cyclic AMP, so providing further evidence that the effects of prostaglandin E1 on platelet aggregation are mediated by cyclic AMP. 2'-Deoxyadenosine 3'-monophosphate did not affect the inhibition of aggregation by prostaglandin E1, suggesting that the site of action of deoxyadenosine derivatives on adenylate cyclase is intracellular. Neither 2',5'-dideoxyadenosine nor compound SQ 22536 alone induced platelet aggregation. Moreover, neither compound potentiated platelet aggregation or the platelet release reaction when suboptimal concentrations of ADP, [arginine]vasopressin, collagen or arachidonate were added to heparinized or citrated platelet-rich plasma in the absence of prostaglandin E1. These results show that cyclic AMP plays no significant role in the responses of platelets to aggregating agents in the absence of compounds that increase the platelet cyclic AMP concentration above the resting value.

Full text

PDF
83

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal K. C., Parks R. E., Jr Adenosine analogs and human platelets. Effects on nucleotide pools and the aggregation phenomenon. Biochem Pharmacol. 1975 Dec 15;24(24):2239–2248. doi: 10.1016/0006-2952(75)90261-0. [DOI] [PubMed] [Google Scholar]
  2. BORN G. V., HASLAM R. J., GOLDMAN M. COMPARATIVE EFFECTIVENESS OF ADENOSINE ANALOGUES AS INHIBITORS OF BLOOD-PLATELET AGGREGATION AND AS VASODILATORS IN MAN. Nature. 1965 Feb 13;205:678–680. doi: 10.1038/205678a0. [DOI] [PubMed] [Google Scholar]
  3. Costa J. L., Murphy D. L. Platelet 5-HT uptake and release stopped rapidly by formaldehyde. Nature. 1975 May 29;255(5507):407–408. doi: 10.1038/255407a0. [DOI] [PubMed] [Google Scholar]
  4. Cusack N. J., Born G. V. Effects of photolysable 2-azido analogues of adenosine, AMP and ADP on human platelets. Proc R Soc Lond B Biol Sci. 1977 Jul 20;197(1129):515–520. doi: 10.1098/rspb.1977.0084. [DOI] [PubMed] [Google Scholar]
  5. Davies T., Davidson M. M., McClenaghan M. D., Say A., Haslam R. J. Factors affecting platelet cyclic GMP levels during aggregation induced by collagen and by arachidonic acid. Thromb Res. 1976 Oct;9(4):387–405. doi: 10.1016/0049-3848(76)90139-0. [DOI] [PubMed] [Google Scholar]
  6. Fain J. N., Pointer R. H., Ward W. F. Effects of adenosine nucleosides on adenylate cyclase, phosphodiesterase, cyclic adenosine monophosphate accumulation, and lipolysis in fat cells. J Biol Chem. 1972 Nov 10;247(21):6866–6872. [PubMed] [Google Scholar]
  7. Fain J. N., Shepherd R. E. Adenosine, cyclic AMP metabolism, and glycogenolysis in rat liver cells. J Biol Chem. 1977 Nov 25;252(22):8066–8070. [PubMed] [Google Scholar]
  8. Haslam R. J., Davidson M. M., Davies T., Lynham J. A., McClenaghan M. D. Regulation of blood platelet function by cyclic nucleotides. Adv Cyclic Nucleotide Res. 1978;9:533–552. [PubMed] [Google Scholar]
  9. Haslam R. J., Davidson M. M., McClenaghan M. D. Cytochalasin B, the blood platelet release reaction and cyclic GMP. Nature. 1975 Feb 6;253(5491):455–457. doi: 10.1038/253455a0. [DOI] [PubMed] [Google Scholar]
  10. Haslam R. J. Interactions of the pharmacological receptors of blood platelets with adenylate cyclase. Ser Haematol. 1973;6(3):333–350. [PubMed] [Google Scholar]
  11. Haslam R. J., Lynham J. A. Activation and inhibition of blood platelet adenylate cyclase by adenosine or by 2-chloroadenosine. Life Sci II. 1972 Dec 8;11(23):1143–1154. doi: 10.1016/0024-3205(72)90269-x. [DOI] [PubMed] [Google Scholar]
  12. Haslam R. J. Roles of cyclic nucleotides in platelet function. Ciba Found Symp. 1975;35:121–151. doi: 10.1002/9780470720172.ch7. [DOI] [PubMed] [Google Scholar]
  13. Haslam R. J., Rosson G. M. Aggregation of human blood platelets by vasopressin. Am J Physiol. 1972 Oct;223(4):958–967. doi: 10.1152/ajplegacy.1972.223.4.958. [DOI] [PubMed] [Google Scholar]
  14. Haslam R. J., Rosson G. M. Effects of adenosine on levels of adenosine cyclic 3',5'-monophosphate in human blood platelets in relation to adenosine incorporation and platelet aggregation. Mol Pharmacol. 1975 Sep;11(5):528–544. [PubMed] [Google Scholar]
  15. Huang M., Drummond G. I. Effect of adenosine on cyclic AMP accumulation in ventricular myocardium. Biochem Pharmacol. 1976 Dec 15;25(24):2713–2719. doi: 10.1016/0006-2952(76)90262-8. [DOI] [PubMed] [Google Scholar]
  16. Huang M., Shimizu H., Daly J. W. Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs. J Med Chem. 1972 May;15(5):462–466. doi: 10.1021/jm00275a005. [DOI] [PubMed] [Google Scholar]
  17. Kikugawa K., Iizuka K., Ichino M. Platelet aggregation inhibitors. 4. N 6 -substituted adenosines. J Med Chem. 1973 Apr;16(4):358–364. doi: 10.1021/jm00262a011. [DOI] [PubMed] [Google Scholar]
  18. Kikugawa K., Suehiro H., Ichino M. Platelet aggregation inhibitors. 6. 2-Thioadenosine derivatives. J Med Chem. 1973 Dec;16(12):1381–1388. doi: 10.1021/jm00270a014. [DOI] [PubMed] [Google Scholar]
  19. Krishna G., Weiss B., Brodie B. B. A simple, sensitive method for the assay of adenyl cyclase. J Pharmacol Exp Ther. 1968 Oct;163(2):379–385. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lehotay D. C., Levey G. S., Vesely D. L., Bornet E. P., Ray M. V., Entman M. L., Schwartz A. The effect of adenylate cyclase inhibitor (ACI) on guanylate cyclase, phosphodiesterase and other enzymes in heart. J Cyclic Nucleotide Res. 1977 Feb;3(1):55–65. [PubMed] [Google Scholar]
  22. Levey G. S., Lehotay D. C., Canterbury J. M., Bricker L. A., Meltz G. J. Isolation of a unique peptide inhibitor of hormone-responsive adenylate cyclase. J Biol Chem. 1975 Jul 25;250(14):5730–5733. [PubMed] [Google Scholar]
  23. Londos C., Preston M. S. Regulation by glucagon and divalent cations of inhibition of hepatic adenylate cyclase by adenosine. J Biol Chem. 1977 Sep 10;252(17):5951–5956. [PubMed] [Google Scholar]
  24. Londos C., Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5482–5486. doi: 10.1073/pnas.74.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKenzie S. G., Bär H. P. On the mechanism of adenyl cyclase inhibition by adenosine. Can J Physiol Pharmacol. 1973 Mar;51(3):190–196. doi: 10.1139/y73-027. [DOI] [PubMed] [Google Scholar]
  26. Miles D. L., Miles D. W., Eyring H. Conformational basis for the activation of adenylate cyclase by adenosine. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2194–2198. doi: 10.1073/pnas.74.6.2194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mills D. C., Macfarlane D. E. Stimulation of human platelet adenylate cyclase by prostaglandin D2. Thromb Res. 1974 Sep;5(3):401–412. doi: 10.1016/0049-3848(74)90176-5. [DOI] [PubMed] [Google Scholar]
  28. Moriwaki K., Foà P. P. Inhibition of rat liver adenyl cyclase by adenosine and adenine nucleotides. Experientia. 1970 Jan 15;26(1):22–22. doi: 10.1007/BF01900365. [DOI] [PubMed] [Google Scholar]
  29. Sahyoun N., Schmitges C. J., Siegel M. I., Cuatrecasas P. 2'-Deoxyadenosine-3'-monophosphate: a naturally occurring inhibitor of adenylate cyclase in amphibian and mammalian cells. Life Sci. 1976 Dec 15;19(12):1961–1969. doi: 10.1016/0024-3205(76)90132-6. [DOI] [PubMed] [Google Scholar]
  30. Sahyoun N., Schmitges C. J., Siegel M. I., Cuatrecasas P. Inhibition of fat cell membrane adenylate cyclase by 2'-deoxyadenosine-3'-monophosphate,. Life Sci. 1976 Dec 15;19(12):1971–1979. doi: 10.1016/0024-3205(76)90133-8. [DOI] [PubMed] [Google Scholar]
  31. Salzman E. W. Cyclic AMP and platelet function. N Engl J Med. 1972 Feb 17;286(7):358–363. doi: 10.1056/NEJM197202172860708. [DOI] [PubMed] [Google Scholar]
  32. Salzman E. W. Interrelation of prostaglandin endoperoxide (prostaglandin G2) and cyclic 3',5'-adenosine monophosphate in human blood platelets. Biochim Biophys Acta. 1977 Aug 25;499(1):48–60. doi: 10.1016/0304-4165(77)90227-6. [DOI] [PubMed] [Google Scholar]
  33. Salzman E. W., Levine L. Cyclic 3',5'-adenosine monophosphate in human blood platelets. II. Effect of N6-2'-o-dibutyryl cyclic 3',5'-adenosine monophosphate on platelet function. J Clin Invest. 1971 Jan;50(1):131–141. doi: 10.1172/JCI106467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shimizu H., Ichishita H., Umeda I. Inhibition of glutamate-elicited accumulation of adenosine cyclic 3',5'-monophosphate in brain slices by alpha, omega-diaminocarboxylic acids. Mol Pharmacol. 1975 Nov;11(6):866–873. [PubMed] [Google Scholar]
  35. Sixma J. J., Lips J. P., Trieschnigg A. M., Holmsen H. Transport and metabolism of adenosine in human blood platelets. Biochim Biophys Acta. 1976 Aug 4;443(1):33–48. doi: 10.1016/0005-2736(76)90489-2. [DOI] [PubMed] [Google Scholar]
  36. Smith J. B., Ingerman C. M., Silver M. J. Formation of prostagland in D2 during endoperoxide-induced platelet aggregation. Thromb Res. 1976 Oct;9(4):413–418. doi: 10.1016/0049-3848(76)90141-9. [DOI] [PubMed] [Google Scholar]
  37. Zenser T. V., Wannemacher R. W., Jr Inhibition of cholera toxin-stimulated intestinal epithelial cell adenylate cyclase by adenosine analogs. Proc Soc Exp Biol Med. 1976 May;152(1):126–129. doi: 10.3181/00379727-152-39342. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES