Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Dec 15;176(3):705–714. doi: 10.1042/bj1760705

Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal

Veronica Prpić 1, Terry L Spencer 1, Fyfe L Bygrave 1
PMCID: PMC1186292  PMID: 747647

Abstract

1. Mitochondria isolated from rat liver by centrifugation of the homogenate in buffered iso-osmotic sucrose at between 4000 and 8000g-min, 1h after the administration in vivo of 30μg of glucagon/100g body wt., retain Ca2+ for over 45min after its addition at 100nmol/mg of mitochondrial protein in the presence of 2mm-Pi. In similar experiments, but after the administration of saline (0.9% NaCl) in place of glucagon, Ca2+ is retained for 6–8min. The ability of glucagon to enhance Ca2+ retention is completely prevented by co-administration of 4.2mg of puromycin/100g body wt. 2. The resting rate of respiration after Ca2+ accumulation by mitochondria from glucagon-treated rats remains low by contrast with that from saline-treated rats. Respiration in the latter mitochondria increased markedly after the Ca2+ accumulation, reflecting the uncoupling action of the ion. 3. Concomitant with the enhanced retention of Ca2+ and low rates of resting respiration by mitochondria from glucagon-treated rats was an increased ability to retain endogenous adenine nucleotides. 4. An investigation of properties of mitochondria known to influence Ca2+ transport revealed a significantly higher concentration of adenine nucleotides but not of Pi in those from glucagon-treated rats. The membrane potential remained unchanged, but the transmembrane pH gradient increased by approx. 10mV, indicating increased alkalinity of the matrix space. 5. Depletion of endogenous adenine nucleotides by Pi treatment in mitochondria from both glucagon-treated and saline-treated rats led to a marked diminution in ability to retain Ca2+. The activity of the adenine nucleotide translocase was unaffected by glucagon treatment of rats in vivo. 6. Although the data are consistent with the argument that the Ca2+-translocation cycle in rat liver mitochondria is a target for glucagon action in vivo, they do not permit conclusions to be drawn about the molecular mechanisms involved in the glucagon-induced alteration to this cycle.

Full text

PDF
708

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asimakis G. K., Sordahl L. A. Effects of atractyloside and palmitoyl coenzyme A on calcium transport in cardiac mitochondria. Arch Biochem Biophys. 1977 Feb;179(1):200–210. doi: 10.1016/0003-9861(77)90104-7. [DOI] [PubMed] [Google Scholar]
  2. BRADLEY L. B., JACOB M., JACOBS E. E., SANADI D. R. Uncoupling of oxidative phosphorylation by cadmium ion. J Biol Chem. 1956 Nov;223(1):147–156. [PubMed] [Google Scholar]
  3. Bryla J., Harris E. J., Plumb J. A. The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP content. FEBS Lett. 1977 Aug 15;80(2):443–448. doi: 10.1016/0014-5793(77)80494-8. [DOI] [PubMed] [Google Scholar]
  4. Bygrave F. L., Heaney T. P., Ramachandran C. Submitochondrial location of ruthenium red-sensitive calcium-ion transport and evidence for its enrichment in a specific population of rat liver mitochondria. Biochem J. 1978 Sep 15;174(3):1011–1019. doi: 10.1042/bj1741011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bygrave F. L. Mitochondria and the control of intracellular calcium. Biol Rev Camb Philos Soc. 1978 Feb;53(1):43–79. doi: 10.1111/j.1469-185x.1978.tb00992.x. [DOI] [PubMed] [Google Scholar]
  6. Bygrave F. L., Ramachandran C., Smith R. L. On the mechanism by which inorganic phosphate stimulates mitochondrial calcium transport. FEBS Lett. 1977 Nov 1;83(1):155–158. doi: 10.1016/0014-5793(77)80663-7. [DOI] [PubMed] [Google Scholar]
  7. Bygrave F. L., Reed K. C. On the role of the adenosine diphosphate-adenosine triphosphate exchange reaction in oxidative phosphorylation: Effect of calcium. FEBS Lett. 1970 May 1;7(4):339–342. doi: 10.1016/0014-5793(70)80200-9. [DOI] [PubMed] [Google Scholar]
  8. Bygrave F. L., Tranter C. J. The subcellular location, maturation and response to increased plasma glucagon of ruthenium red-insensitive calcium-ion transport in rat liver. Biochem J. 1978 Sep 15;174(3):1021–1030. doi: 10.1042/bj1741021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CARAFOLI E., ROSSI C. S., LEHNINGER A. L. UPTAKE OF ADENINE NUCLEOTIDES BY RESPIRING MITOCHONDRIA DURING ACTIVE ACCUMULATION OF CA++ AND PHOSPHATE. J Biol Chem. 1965 May;240:2254–2261. [PubMed] [Google Scholar]
  10. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  11. Chudapongse P., Haugaard N. The effect of phosphoenolpyruvate on calcium transport by mitochondria. Biochim Biophys Acta. 1973 May 25;307(3):599–606. doi: 10.1016/0005-2736(73)90304-0. [DOI] [PubMed] [Google Scholar]
  12. Dorman D. M., Barritt G. J., Bygrave F. L. Stimulation of hepatic mitochondrial calcium transport by elevated plasma insulin concentrations. Biochem J. 1975 Sep;150(3):389–395. doi: 10.1042/bj1500389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dulley J. R. Determination of inorganic phosphate in the presence of detergents or protein. Anal Biochem. 1975 Jul;67(1):91–96. doi: 10.1016/0003-2697(75)90275-4. [DOI] [PubMed] [Google Scholar]
  14. ERNSTER L. Organization of mitochondrial DPN-linked systems. I. Reversible uncoupling of oxidative phosphorylation. Exp Cell Res. 1956 Jun;10(3):704–720. doi: 10.1016/0014-4827(56)90048-9. [DOI] [PubMed] [Google Scholar]
  15. Halestrap A. P. The mechanism of the stimulation of pyruvate transport into rat liver mitochondria by glucagon. Biochem Soc Trans. 1977;5(1):216–219. doi: 10.1042/bst0050216. [DOI] [PubMed] [Google Scholar]
  16. Hughes B. P., Barritt G. J. Effects of glucagon and N6O2'-dibutyryladenosine 3':5'-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. Biochem J. 1978 Oct 15;176(1):295–304. doi: 10.1042/bj1760295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimberg D. V., Goldstein S. A. Binding of calcium by liver mitochondria of rats treated with steroid hormones. J Biol Chem. 1966 Jan 10;241(1):95–103. [PubMed] [Google Scholar]
  18. Kimberg D. V., Goldstein S. A. Binding of calcium by liver mitochondria: an effect of steroid hormones in vitamin D-depleted and parathyroidectomized rats. Endocrinology. 1967 Jan;80(1):89–98. doi: 10.1210/endo-80-1-89. [DOI] [PubMed] [Google Scholar]
  19. Kimura S., Rasmussen H. Adrenal glucocorticoids, adenine nucleotide translocation, and mitochondrial calcium accumulation. J Biol Chem. 1977 Feb 25;252(4):1217–1225. [PubMed] [Google Scholar]
  20. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  21. Leblanc P., Bourdain M., Clauser H. A specific ADP requirement in he course of Ca++ and phosphate accumulation in mitochondria. Biochem Biophys Res Commun. 1970 Aug 11;40(3):754–762. doi: 10.1016/0006-291x(70)90967-8. [DOI] [PubMed] [Google Scholar]
  22. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  23. McIntyre H. J., Bygrave F. L. Retention of calcium by mitochondria isolated from Ehrlich ascites tumor cells. Arch Biochem Biophys. 1974 Dec;165(2):744–748. doi: 10.1016/0003-9861(74)90303-8. [DOI] [PubMed] [Google Scholar]
  24. Meisner H., Klingenberg M. Efflux of adenine nucleotides from rat liver mitochondria. J Biol Chem. 1968 Jul 10;243(13):3631–3639. [PubMed] [Google Scholar]
  25. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  26. Nakazawa T., Asami K., Suzuki H., Yukawa O. Appearance of energy conservation system in rat liver mitochondria during development. The role of adenine nucleotide translocation. J Biochem. 1973 Feb;73(2):397–406. [PubMed] [Google Scholar]
  27. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  28. Out T. A., Kemp A., Jr, Souverijn J. H. The effect of bongkrekic acid on the Ca 2+ -stimulated oxidation in rat-liver mitochondria and its relation to the efflux of intramitochondrial adenine nucleotides. Biochim Biophys Acta. 1971 Sep 7;245(2):299–304. doi: 10.1016/0005-2728(71)90148-4. [DOI] [PubMed] [Google Scholar]
  29. Peng C. F., Price D. W., Bhuvaneswaran C., Wadkins C. L. Factors that influence phosphoenolpyruvate-induced calcium efflux from rat liver mitochondria. Biochem Biophys Res Commun. 1974 Jan;56(1):134–141. doi: 10.1016/s0006-291x(74)80325-6. [DOI] [PubMed] [Google Scholar]
  30. Pollack J. K., Sutton R. The adenine nucleotide translocator in foetal, suckling and adult rat liver mitochondria. Biochem Biophys Res Commun. 1978 Jan 13;80(1):193–198. doi: 10.1016/0006-291x(78)91122-1. [DOI] [PubMed] [Google Scholar]
  31. Pollak J. K. The maturation of the inner membrane of foetal rat liver mitochondria. Biochem J. 1975 Sep;150(3):477–488. doi: 10.1042/bj1500477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  33. Ramachandran C., Bygrave F. L. Calcium ion cycling in rat liver mitochondria. Biochem J. 1978 Aug 15;174(2):613–620. doi: 10.1042/bj1740613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rasmussen H. Mitochondrial ion transport: mechanism and physiological significance. Fed Proc. 1966 May-Jun;25(3):903–911. [PubMed] [Google Scholar]
  35. Reed K. C., Bygrave F. L. Methodology for in vitro studies of Ca-2+ transport. Anal Biochem. 1975 Jul;67(1):44–54. doi: 10.1016/0003-2697(75)90270-5. [DOI] [PubMed] [Google Scholar]
  36. Reed K. C., Bygrave F. L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974 May;140(2):143–155. doi: 10.1042/bj1400143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. SZARKOWSKA L., KLINGENBERG M. ON THE ROLE OF UBIQUINONE IN MITOCHONDRIA. SPECTROPHOTOMETRIC AND CHEMICAL MEASUREMENTS OF ITS REDOX REACTIONS. Biochem Z. 1963;338:674–697. [PubMed] [Google Scholar]
  38. Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spencer T., Bygrave F. L. Modification by calcium ions of adenine nucleotide translocation in rat liver mitochondria. Biochem J. 1972 Sep;129(2):355–365. doi: 10.1042/bj1290355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sul H. S., Shrago E., Shug A. L. Relationship of phosphoenolpyruvate transport, acyl coenzyme A inhibition of adenine nucleotide translocase and calcium ion efflux in guinea pig heart mitochondria. Arch Biochem Biophys. 1976 Jan;172(1):230–237. doi: 10.1016/0003-9861(76)90071-0. [DOI] [PubMed] [Google Scholar]
  41. Titheradge M. A., Coore H. G. The mitochondrial pyruvate carrier, its exchange properties and its regulation by glucagon. FEBS Lett. 1976 Mar 15;63(1):45–50. doi: 10.1016/0014-5793(76)80191-3. [DOI] [PubMed] [Google Scholar]
  42. WASHKO M. E., RICE E. W. Determination of glucose by an improved enzymatic procedure. Clin Chem. 1961 Oct;7:542–545. [PubMed] [Google Scholar]
  43. Waltenbaugh A. M., Friedmann N. Hormone sensitive calcium uptake by liver microsomes. Biochem Biophys Res Commun. 1978 May 30;82(2):603–608. doi: 10.1016/0006-291x(78)90917-8. [DOI] [PubMed] [Google Scholar]
  44. Weidemann M. J., Erdelt H., Klingenberg M. Adenine nucleotide translocation of mitochondria. Identification of carrier sites. Eur J Biochem. 1970 Oct;16(2):313–335. doi: 10.1111/j.1432-1033.1970.tb01086.x. [DOI] [PubMed] [Google Scholar]
  45. Yamazaki R. K. Glucagon stimulation of mitochondrial respiration. J Biol Chem. 1975 Oct 10;250(19):7924–7930. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES