Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jan 1;177(1):289–302. doi: 10.1042/bj1770289

Properties of cupric ions in benzylamine oxidase from pig plasma as studied by magnetic-resonance and kinetic methods.

R Barker, N Boden, G Cayley, S C Charlton, R Henson, M C Holmes, I D Kelly, P F Knowles
PMCID: PMC1186368  PMID: 218560

Abstract

Benzylamine oxidase from pig plasma has been studied by a variety of chemical and physical techniques. 1. Analytical ultracentrifugation, gel electrophoresis and isoelectric-focusing studies suggest that the enzyme is composed of two subunits with closely similar primary structures. 2. E.s.r. and n.m.r. measurements show that the enzyme contains two well-separated (greater than 0.6 nm) Cu2+ ions at chemically distinct sites. Each Cu2+ ion is coordinated by two water molecules, one 'axial' and the other 'equatorial'. Both water molecules undergo fast exchange (10(5)--10(8) s-1) with solvent and are deprotonated in the pH range 8--9, but only the equatorial water molecule is displaced by the inhibitors N3- and CN-. 3. Kinetic and e.s.r. measurements show that azide and cyanide compete against O2 binding and also make the two Cu2+ sites identical. It is concluded that Cu2+ must participate in the re-oxidation of reduced enzyme by molecular O2.

Full text

PDF
302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLASCHKO H., BUFFONI F. PYRIDOXAL PHOSPHATE AS A CONSTITUENT OF THE HISTAMINASE (BENZYLAMINE OXIDASE) OF PIG PLASMA. Proc R Soc Lond B Biol Sci. 1965 Aug 24;163:45–60. doi: 10.1098/rspb.1965.0059. [DOI] [PubMed] [Google Scholar]
  2. BUFFONI F., BLASCHKO H. BENZYLAMINE OXIDASE AND HISTAMINASE: PURIFICATION AND CRYSTALLIZATION OF AN ENZYME FROM PIG PLASMA. Proc R Soc Lond B Biol Sci. 1964 Dec 15;161:153–167. doi: 10.1098/rspb.1964.0086. [DOI] [PubMed] [Google Scholar]
  3. Boden N., Holmes M. C., Knowles P. F. Binding of water to "types I and II" Cu2+ in proteins. Biochem Biophys Res Commun. 1974 Apr 8;57(3):845–848. doi: 10.1016/0006-291x(74)90623-8. [DOI] [PubMed] [Google Scholar]
  4. Boden N., Holmes M. C., Knowles P. F. Properties of the cupric sites in bovine superoxide dismutase studied by nuclear-magnetic-relaxation measurements. Biochem J. 1979 Jan 1;177(1):303–309. doi: 10.1042/bj1770303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buffoni F., Corte L. D., Knowles P. F. The nature of copper in pig plasma benzylamine oxidase. Biochem J. 1968 Jan;106(2):575–576. doi: 10.1042/bj1060575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buffoni F., Ignesti G. Active-sitve titration of pig plasma benzylamine oxidase with phenylhydrazine. Biochem J. 1975 Feb;145(2):369–372. doi: 10.1042/bj1450369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  8. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  9. Curzon G. The inhibition of caeruloplasmin by azide. Biochem J. 1966 Aug;100(2):295–302. doi: 10.1042/bj1000295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edelstein S. J., Schachman H. K. The simultaneous determination of partial specific volumes and molecular weights with microgram quantities. J Biol Chem. 1967 Jan 25;242(2):306–311. [PubMed] [Google Scholar]
  11. Fletterick R. J., Bates D. J., Steitz T. A. The structure of a yeast hexokinase monomer and its complexes with substrates at 2.7-A resolution. Proc Natl Acad Sci U S A. 1975 Jan;72(1):38–42. doi: 10.1073/pnas.72.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lindström A., Olsson B., Petterson G. Effect of azide on some spectral and kinetic properties of pig-plasma benzylamine oxidase. Eur J Biochem. 1974 Oct 1;48(1):237–243. doi: 10.1111/j.1432-1033.1974.tb03761.x. [DOI] [PubMed] [Google Scholar]
  13. Lindström A., Olsson B., Pettersson G. Kinetics of the interaction between pig-plasma benzylamine oxidase and substrate. Eur J Biochem. 1973 May;35(1):70–77. doi: 10.1111/j.1432-1033.1973.tb02811.x. [DOI] [PubMed] [Google Scholar]
  14. Lindström A., Olsson B., Pettersson G. Transient kinetics of benzaldehyde formation during the catalytic action of pig-plasma benzylamine oxidase. Eur J Biochem. 1974 Mar 1;42(2):377–381. doi: 10.1111/j.1432-1033.1974.tb03349.x. [DOI] [PubMed] [Google Scholar]
  15. Lindström A., Pettersson G. Active-site titration of pig-plasma benzylamine oxidase with hydrazine derivatives. Eur J Biochem. 1973 May 2;34(3):564–568. doi: 10.1111/j.1432-1033.1973.tb02796.x. [DOI] [PubMed] [Google Scholar]
  16. Lindström A., Pettersson G. The mechanism of inhibition of pig-plasma benzylamine oxidase by the copper-chelating reagent cuprizone. Eur J Biochem. 1974 Oct 1;48(1):229–236. doi: 10.1111/j.1432-1033.1974.tb03760.x. [DOI] [PubMed] [Google Scholar]
  17. Neumann R., Hevey R., Abeles R. H. The action of plasma amine oxidase on beta-haloamines. Evidence for proton abstraction in the oxidative reaction. J Biol Chem. 1975 Aug 25;250(16):6362–6367. [PubMed] [Google Scholar]
  18. Olsson B., Olsson J., Pettersson G. Kinetic isotope effects on the catalytic activity of pig-plasma benzylamine oxidase. Eur J Biochem. 1976 May 1;64(2):327–331. doi: 10.1111/j.1432-1033.1976.tb10305.x. [DOI] [PubMed] [Google Scholar]
  19. TABOR C. W., TABOR H., ROSENTHAL S. M. Purification of amine oxidase from beef plasma. J Biol Chem. 1954 Jun;208(2):645–661. [PubMed] [Google Scholar]
  20. Taylor C. E., Taylor R. S., Rasmussen C., Knowles P. F. A catalytic mechanism for the enzyme benzylamine oxidase from pig plasma. Biochem J. 1972 Dec;130(3):713–728. doi: 10.1042/bj1300713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van de Bogart M., Beinert H. Micro methods for the quantitative determination of iron and copper in biological material. Anal Biochem. 1967 Aug;20(2):325–334. doi: 10.1016/0003-2697(67)90038-3. [DOI] [PubMed] [Google Scholar]
  22. Vesterberg O. Isoelectric focusing of proteins in polyacrylamide gels. Biochim Biophys Acta. 1972 Jan 26;257(1):11–19. doi: 10.1016/0005-2795(72)90248-6. [DOI] [PubMed] [Google Scholar]
  23. Watanabe K., Yasunobu K. T. Carbohydrate content of bovine plasma amine oxidase and isolation of a carbohydrate-containing fragment attached to asparagine. J Biol Chem. 1970 Sep 25;245(18):4612–4617. [PubMed] [Google Scholar]
  24. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  25. Williams-Smith D. L., Bray R. C., Barber M. J., Tsopanakis A. D., Vincent S. P. Changes in apparent pH on freezing aqueous buffer solutions and their relevance to biochemical electron-paramagnetic-resonance spectroscopy. Biochem J. 1977 Dec 1;167(3):593–600. doi: 10.1042/bj1670593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES