Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Nov;110(2):201–206. doi: 10.1042/bj1100201

The metabolism of [Me-14C]choline in the brain of the rat in vivo

G B Ansell 1, Sheila Spanner 1
PMCID: PMC1187198  PMID: 5726197

Abstract

[Me-14C]Choline was injected intracerebrally into the adult rat, and its uptake into the lipids and their water-soluble precursors in brain was studied. The radioactivity could be detected only in the choline-containing lipids and was confined to the base choline. The results indicated that initial phosphorylation of the free choline followed by the formation of CDP-choline and the subsequent transfer of the phosphorylcholine to a diglyceride is one of the principal routes by which choline lipids in brain are formed. Further evidence for this was obtained in experiments in which either phosphoryl[Me-14C]choline or [32P]orthophosphate was injected and the radioactivity in the choline-containing water-soluble and lipidbound components studied.

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANSELL G. B., BAYLISS B. J. The cytidine diphosphate choline content of rat brain. Biochem J. 1961 Jan;78:209–213. doi: 10.1042/bj0780209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ANSELL G. B., SPANNER S. THE ALKALINE HYDROLYSIS OF THE ETHANOLAMINE PLASMALOGEN OF BRAIN TISSUE. J Neurochem. 1963 Dec;10:941–945. doi: 10.1111/j.1471-4159.1963.tb11921.x. [DOI] [PubMed] [Google Scholar]
  3. Abdel-Latif A. A., Abood L. G. In vivo incorporation of l-[14C]serine into phospholipids and proteins of the subcellular fractions of developing rat brain. J Neurochem. 1966 Nov;13(11):1189–1196. doi: 10.1111/j.1471-4159.1966.tb04276.x. [DOI] [PubMed] [Google Scholar]
  4. Ansell G. B., Chojnacki T. The incorporation of the phosphate esters of N-substituted aminoethanols into the phospholipids of brain and liver. Biochem J. 1966 Jan;98(1):303–310. doi: 10.1042/bj0980303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ansell G. B., Spanner S. The metabolism of labelled ethanolamine in the brain of the rat in vivo. J Neurochem. 1967 Sep;14(9):873–885. doi: 10.1111/j.1471-4159.1967.tb09576.x. [DOI] [PubMed] [Google Scholar]
  6. Bickerstaffe R., Mead J. F. Metabolism of palmitaldehyde-1-14C in the rat brain. Biochemistry. 1967 Mar;6(3):655–662. doi: 10.1021/bi00855a003. [DOI] [PubMed] [Google Scholar]
  7. Bjørnstad P., Bremer J. In vivo studies on pathways for the biosynthesis of lecithin in the rat. J Lipid Res. 1966 Jan;7(1):38–45. [PubMed] [Google Scholar]
  8. DAVISON A. N., WAJDA M. Metabolism of myelin lipids: estimation and separation of brain lipids in the developing rabbit. J Neurochem. 1959 Oct;4:353–359. doi: 10.1111/j.1471-4159.1959.tb13217.x. [DOI] [PubMed] [Google Scholar]
  9. DAWSON R. M., HEMINGTON N., DAVENPORT J. B. Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses. Biochem J. 1962 Sep;84:497–501. doi: 10.1042/bj0840497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DAWSON R. M. Phosphorylcholine in rat tissues. Biochem J. 1955 Jun;60(2):325–328. doi: 10.1042/bj0600325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davison A. N., Gregson N. A. Metabolism of cellular membrane sulpholipids in the rat brain. Biochem J. 1966 Mar;98(3):915–922. doi: 10.1042/bj0980915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  13. GROTH D. P., BAIN J. A., PFEIFFER C. C. The comparative distribution of C14-labeled 2-dimethylaminoethanol and choline in the mouse. J Pharmacol Exp Ther. 1958 Dec;124(4):290–295. [PubMed] [Google Scholar]
  14. KOPACZYK K. C., RADIN N. S. IN VIVO CONVERSIONS OF CEREBROSIDE AND CERAMIDE IN RAT BRAIN. J Lipid Res. 1965 Jan;6:140–145. [PubMed] [Google Scholar]
  15. Long C., Odavić R., Sargent E. J. The action of cabbage-leaf phospholipase D upon lysolecithin. Biochem J. 1967 Jan;102(1):216–220. doi: 10.1042/bj1020216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nicholson B. H., Peacocke A. R. The inhibition of ribonucleic acid polymerase by acridines. Biochem J. 1966 Jul;100(1):50–58. doi: 10.1042/bj1000050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PORCELLATI G. The levels of some free nitrogen-containing phosphate esters in nervous tissue. J Neurochem. 1958;2(2-3):128–137. doi: 10.1111/j.1471-4159.1958.tb12358.x. [DOI] [PubMed] [Google Scholar]
  18. REINER J. M. The study of metabolic turnover rates by means of isotopic tracers. I. Fundamental relations. Arch Biochem Biophys. 1953 Sep;46(1):53–79. doi: 10.1016/0003-9861(53)90170-2. [DOI] [PubMed] [Google Scholar]
  19. RICHTER D., CROSSLAND J. Variation in acetylcholine content of the brain with physiological state. Am J Physiol. 1949 Nov;159(2):247–255. doi: 10.1152/ajplegacy.1949.159.2.247. [DOI] [PubMed] [Google Scholar]
  20. Spitzer H. L., Morrison K., Norman J. R. The incorporation of L-[Me-14C]methionine and [Me-3H]choline into lung phosphatides. Biochim Biophys Acta. 1968 May 1;152(3):552–558. doi: 10.1016/0005-2760(68)90095-7. [DOI] [PubMed] [Google Scholar]
  21. WEBSTER G. R. Studies on the plasmalogens of nervous tissue. Biochim Biophys Acta. 1960 Oct 21;44:109–116. doi: 10.1016/0006-3002(60)91529-8. [DOI] [PubMed] [Google Scholar]
  22. Wells M. A., Dittmer J. C. A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain. Biochemistry. 1967 Oct;6(10):3169–3175. doi: 10.1021/bi00862a026. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES