Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Dec;110(4):755–763. doi: 10.1042/bj1100755

The metabolism of thymol by a Pseudomonas

Enid M Chamberlain 1, S Dagley 1
PMCID: PMC1187451  PMID: 4303067

Abstract

1. Pseudomonas putida when grown with thymol contained a meta-fission dioxygenase, which required ferrous ions and readily cleaved the benzene nucleus of catechols between adjacent carbon atoms bearing hydroxyl and isopropyl groups. 2. 3-Hydroxythymo-1,4-quinone was excreted towards the end of exponential growth and later was slowly metabolized. This compound was oxidized by partially purified extracts only when NADH was supplied; the substrate for the dioxygenase appeared to be 3-hydroxythymo-1,4-quinol, which was readily and non-enzymically oxidized to the quinone. 3. 2-Oxobutyrate (0·9 mole) was formed from 1 mole of 3-hydroxythymo-1,4-quinone with the consumption of 1 mole of oxygen; acetate, isobutyrate and 2-hydroxybutyrate (which arose from the enzymic reduction of 2-oxobutyrate) were also formed. 4. These products, which were produced only when the catechol substrate contained a third hydroxyl group, appeared to result from the enzymic hydrolysis of the ring-fission product.

Full text

PDF
759

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayly R. C., Dagley S., Gibson D. T. The metabolism of cresols by species of Pseudomonas. Biochem J. 1966 Nov;101(2):293–301. doi: 10.1042/bj1010293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAGLEY S., GIBSON D. T. THE BACTERIAL DEGRADATION OF CATECHOL. Biochem J. 1965 May;95:466–474. doi: 10.1042/bj0950466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAGLEY S., TRUDGILL P. W. THE METABOLISM OF GALACTARATE, D-GLUCARATE AND VARIOUS PENTOSES BY SPECIES OF PSEUDOMONAS. Biochem J. 1965 Apr;95:48–58. doi: 10.1042/bj0950048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. EL HAWARY M. F. S., THOMPSON R. H. S. Separation and estimation of blood keto acids by paper chromatography. Biochem J. 1953 Feb;53(3):340–347. doi: 10.1042/bj0530340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans W. C. Oxidation of phenol and benzoic acid by some soil bacteria. Biochem J. 1947;41(3):373–382. doi: 10.1042/bj0410373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HASSALL H., GREENBERG D. M. Studies on the enzymic decomposition of urocanic acid. V. The formation of 4-oxoglutaramic acid, a nonenzymic oxidation product of 4(5)-imidazolone-5(4)-propionic acid. J Biol Chem. 1963 Apr;238:1423–1431. [PubMed] [Google Scholar]
  8. HAYAISHI O., TANIUCHI H., TASHIRO M., KUNO S. Studies on the metabolism of kynurenic acid. I. The formation of L-glutamic acid, D- and L-alanine, and acetic acid from kynurenic acid by Pseudomonas extracts. J Biol Chem. 1961 Sep;236:2492–2497. [PubMed] [Google Scholar]
  9. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  10. MORRISON R. I. The isolation of L-pipecolinic acid from Trifolium repens. Biochem J. 1953 Feb;53(3):474–478. doi: 10.1042/bj0530474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SWIM H. E., KRAMPITZ L. O. Acetic acid oxidation by Escherichia coli; evidence for the occurrence of a tricarboxylic acid cycle. J Bacteriol. 1954 Apr;67(4):419–425. doi: 10.1128/jb.67.4.419-425.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  13. WILLIAMS D. E., REISFELD R. A. DISC ELECTROPHORESIS IN POLYACRYLAMIDE GELS: EXTENSION TO NEW CONDITIONS OF PH AND BUFFER. Ann N Y Acad Sci. 1964 Dec 28;121:373–381. doi: 10.1111/j.1749-6632.1964.tb14210.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES