Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 Feb;111(3):273–278. doi: 10.1042/bj1110273

Repression by glucose of acetohydroxy acid synthetase in Escherichia coli B

M B Coukell 1, W J Polglase 1
PMCID: PMC1187508  PMID: 4886117

Abstract

Acetolactate formation in Escherichia coli B results from the activity of a single system, acetohydroxy acid synthetase, which has a pH optimum of 8·0 and is sensitive to end-product inhibition by l-valine. Acetohydroxy acid synthetase was found to be subject to catabolite repression, and the nature and concentration of the carbon source had a greater effect on the formation of the enzyme than had the known end products (valine, isoleucine, leucine and pantothenate) of the biosynthetic pathways of which this enzyme is a member. The results suggest that acetohydroxy acid synthetase may play an amphibolic role in E. coli B.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong F. B., Gordon M. L., Wagner R. P. BIOSYNTHESIS OF VALINE AND ISOLEUCINE, VI. ENZYME REPRESSION IN SALMONELLA. Proc Natl Acad Sci U S A. 1963 Mar;49(3):322–329. doi: 10.1073/pnas.49.3.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRAGG P. D., POLGLASE W. J. ENZYMATIC ACTIVITIES OF STREPTOMYCIN-DEPENDENT ESCHERICHIA COLI IN RELATION TO VALINE FORMATION. J Bacteriol. 1964 Nov;88:1399–1402. doi: 10.1128/jb.88.5.1399-1402.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHANGEUX J. P. The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harb Symp Quant Biol. 1961;26:313–318. doi: 10.1101/sqb.1961.026.01.037. [DOI] [PubMed] [Google Scholar]
  4. Coukell M. B., Polglase W. J. Relaxation of catabolite repression in streptomycin-dependent Escherichia coli. Biochem J. 1969 Feb;111(3):279–286. doi: 10.1042/bj1110279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Desai I. D., Polglase W. J. Characterization and properties of acetohydroxy acid synthetase of streptomycin-dependent Escherichia coli. Biochim Biophys Acta. 1965 Oct 25;110(1):181–188. doi: 10.1016/s0926-6593(65)80107-2. [DOI] [PubMed] [Google Scholar]
  7. Desai I. D., Polglase W. J. Threonine dehydratase of streptomycin-dependent Escherichia coli K-12. Biochim Biophys Acta. 1966 Mar 21;114(3):642–644. doi: 10.1016/0005-2787(66)90116-x. [DOI] [PubMed] [Google Scholar]
  8. Epps H. M., Gale E. F. The influence of the presence of glucose during growth on the enzymic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids. Biochem J. 1942 Sep;36(7-9):619–623. doi: 10.1042/bj0360619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FREUNDLICH M., BURNS R. O., UMBARGER H. E. Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1804–1808. doi: 10.1073/pnas.48.10.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freundlich M. Valyl-Transfer RNA: Role in Repression of the Isoleucine-Valine Enzymes in Escherichia coli. Science. 1967 Aug 18;157(3790):823–825. doi: 10.1126/science.157.3790.823-a. [DOI] [PubMed] [Google Scholar]
  11. GORINI L., GUNDERSEN W. Induction by arginine of enzymes of arginine biosynthesis in Escherichia coli B. Proc Natl Acad Sci U S A. 1961 Jul 15;47:961–971. doi: 10.1073/pnas.47.7.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HALPERN Y. S., UMBARGER H. E. Evidence for two distinct enzyme systems forming acetolactate in Aerobacter aerogenes. J Biol Chem. 1959 Dec;234:3067–3071. [PubMed] [Google Scholar]
  13. Hanson R. S., Cox D. P. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J Bacteriol. 1967 Jun;93(6):1777–1787. doi: 10.1128/jb.93.6.1777-1787.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  16. Polglase W. J. Regulation of acetohydroxy and synthetase in streptomycin-dependent Escherichia coli. Can J Biochem. 1966 May;44(5):599–606. doi: 10.1139/o66-072. [DOI] [PubMed] [Google Scholar]
  17. RADHAKRISHANAN A. N., SNELL E. E. Biosynthesis of valine and isoleucine. 2. Formation of alpha-acetolactate and alpha-aceto-alpha-hydroxybutyrate in Neurospora crassa and Escherichia coli. J Biol Chem. 1960 Aug;235:2316–2321. [PubMed] [Google Scholar]
  18. RAMAKRISHNAN T., ADELBERG E. A. REGULATORY MECHANISMS IN THE BIOSYNTHESIS OF ISOLEUCINE AND VALINE. II. IDENTIFICATION OF TWO OPERATOR GENES. J Bacteriol. 1965 Mar;89:654–660. doi: 10.1128/jb.89.3.654-660.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. UMBARGER H. E., BROWN B. Isoleucine and valine metabolism in Escherichia coli. VII. A negative feedback mechanism controlling isoleucine biosynthesis. J Biol Chem. 1958 Aug;233(2):415–420. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES