Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 Feb;111(3):359–364. doi: 10.1042/bj1110359

A comparison of the properties of the pyruvate kinases of the fat body and flight muscle of the adult male desert locust

E Bailey 1, P R Walker 1
PMCID: PMC1187519  PMID: 5767056

Abstract

1. The pyruvate kinases of the desert locust fat body and flight muscle were partially purified by ammonium sulphate fractionation. 2. The fat-body enzyme is allosterically activated by very low (1μm) concentrations of fructose 1,6-diphosphate, whereas the flight-muscle enzyme is unaffected by this metabolite at physiological pH. 3. Flight-muscle pyruvate kinase is activated by preincubation at 25° for 5min., whereas the fat-body enzyme is unaffected by such treatment. 4. Both enzymes require 1–2mm-ADP for maximal activity and are inhibited at higher concentrations. With the fat-body enzyme inhibition by ADP is prevented by the presence of fructose 1,6-diphosphate. 5. Both enzymes are inhibited by ATP, half-maximal inhibition occurring at about 5mm-ATP. With the fat-body enzyme ATP inhibition can be reversed by fructose 1,6-diphosphate. 6. The fat-body enzyme exhibits maximal activity at about pH7·2 and the activity decreases rapidly above this pH. This inactivation at high pH is not observed in the presence of fructose 1,6-diphosphate, i.e. maximum stimulating effects of fructose 1,6-diphosphate are observed at high pH. The flight-muscle enzyme exhibits two optima, one at about pH7·2 as with the fat-body enzyme and the other at about pH8·5. Stimulation of the enzyme activity by fructose 1,6-diphosphate was observed at pH8·5 and above.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey E., Stirpe F., Taylor C. B. Regulation of rat liver pyruvate kinase. The effect of preincubation, pH, copper ions, fructose 1,6-diphosphate and dietary changes on enzyme activity. Biochem J. 1968 Jul;108(3):427–436. doi: 10.1042/bj1080427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hess B., Haeckel R., Brand K. FDP-activation of yeast pyruvate kinase. Biochem Biophys Res Commun. 1966 Sep 22;24(6):824–831. doi: 10.1016/0006-291x(66)90322-6. [DOI] [PubMed] [Google Scholar]
  3. Maeba P., Sanwal B. D. The regulation of pyruvate kinase of Escherichia coli by fructose diphosphate and adenylic acid. J Biol Chem. 1968 Jan 25;243(2):448–450. [PubMed] [Google Scholar]
  4. Milman L. S., Yurowitzki YuG Fructose 1,6-diphosphate and 3',5'-cyclic AMP as positive effectors of pyruvate kinase in developing embryos. Biochim Biophys Acta. 1967 Sep 12;146(1):301–304. doi: 10.1016/0005-2744(67)90101-5. [DOI] [PubMed] [Google Scholar]
  5. Passeron S., Jiménez de Asua L., Carminatti H. Fructose 1,6-diphosphate, a reactivator of Cu++-inhibited pyruvate kinase from liver. Biochem Biophys Res Commun. 1967 Apr 7;27(1):33–38. doi: 10.1016/s0006-291x(67)80035-4. [DOI] [PubMed] [Google Scholar]
  6. Pogson C. I. Two interconvertible forms of pyruvate kinase in adipose tissue. Biochem Biophys Res Commun. 1968 Feb 15;30(3):297–302. doi: 10.1016/0006-291x(68)90450-6. [DOI] [PubMed] [Google Scholar]
  7. Tanaka T., Sue F., Morimura H. Feed-forward activation and feed-back inhibition of pyruvate kinase type L of rat liver. Biochem Biophys Res Commun. 1967 Nov 17;29(3):444–449. doi: 10.1016/0006-291x(67)90477-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES