Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Oct;417:323–341. doi: 10.1113/jphysiol.1989.sp017804

Differential modulation by pulmonary stretch afferents of some reflex cardioinhibitory responses in the cat.

M B Daly 1, E Kirkman 1
PMCID: PMC1189269  PMID: 2621597

Abstract

1. Cats were anaesthetized with a mixture of chloralose and urethane, and were artificially ventilated, the thorax being opened via a medial sternotomy. 2. Various cardiovascular receptors were stimulated during reflex inhibition of the central inspiratory neurones produced by electrical stimulation of both superior laryngeal nerves simultaneously, while the afferent input from the lungs was held constant by temporarily interrupting artificial respiration, the lungs being held static in their expiratory position. 3. Reflex cardioinhibitory responses were elicited by stimulation of (a) the carotid body chemoreceptors by intracarotid injections of cyanide; (b) the arterial baroreflex by controlled elevations of the blood pressure; (c) the carotid sinus baroreceptors by raising the pressure in isolated perfused carotid sinus preparations; (d) cardiac receptors by left atrial injections of veratridine, and (e) pulmonary C fibres (including J receptors) by right atrial injections of phenyl biguanide. 4. The effects of single inflations of the lungs on these reflex cardioinhibitory responses were studied and compared with the effects of the various inputs alone. 5. Stepwise increases in lung volume, while having no consistent effect on arterial blood pressure, progressively diminished the arterial chemoreceptor-induced bradycardia to a value of about 7% of the control response without lung inflation. The pulmonary afferents were less effective on reflex responses from other inputs, the corresponding values being: arterial baroreflex, 66%; carotid baroreceptors, 66%, and cardiac receptors, 70%. These effects of lung inflation were abolished by selective denervation of the lungs. 6. In contrast, the size of the bradycardia evoked by pulmonary C fibre stimulation was, on average, unaffected by inflation of the lungs. In some tests the response was actually increased. 7. The differential modulation by lung inflation of these reflex cardioinhibitory responses were the same after upper thoracic sympathectomy indicating that pulmonary afferents and cardiac efferents involved fibres in the vagus nerves. 8. The possible central mechanisms responsible for the differential modulation by lung inflation of cardioinhibitory reflexes are discussed.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGOSTONI E., CHINNOCK J. E., DE DALY M. B., MURRAY J. G. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol. 1957 Jan 23;135(1):182–205. doi: 10.1113/jphysiol.1957.sp005703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. AVIADO D. M., DALY M. D., LEE C. Y., SCHMIDT C. F. The contribution of the bronchial circulation to the venous admixture in pulmonary venous blood. J Physiol. 1961 Mar;155:602–622. doi: 10.1113/jphysiol.1961.sp006650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong D. J., Luck J. C. A comparative study of irritant and type J receptors in the cat. Respir Physiol. 1974 Jul;21(1):47–60. doi: 10.1016/0034-5687(74)90006-1. [DOI] [PubMed] [Google Scholar]
  4. Bennett J. A., Goodchild C. S., Kidd C., McWilliam P. N. Neurones in the brain stem of the cat excited by vagal afferent fibres from the heart and lungs. J Physiol. 1985 Dec;369:1–15. doi: 10.1113/jphysiol.1985.sp015884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett J. A., Kidd C., Latif A. B., McWilliam P. N. A horseradish peroxidase study of vagal motoneurones with axons in cardiac and pulmonary branches of the cat and dog. Q J Exp Physiol. 1981 Apr;66(2):145–154. doi: 10.1113/expphysiol.1981.sp002541. [DOI] [PubMed] [Google Scholar]
  6. Coleman H. A., Parkington H. C. Induction of prolonged excitability in myometrium of pregnant guinea-pigs by prostaglandin F2 alpha. J Physiol. 1988 May;399:33–47. doi: 10.1113/jphysiol.1988.sp017066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coleridge H. M., Coleridge J. C., Luck J. C. Pulmonary afferent fibres of small diameter stimulated by capsaicin and by hyperinflation of the lungs. J Physiol. 1965 Jul;179(2):248–262. doi: 10.1113/jphysiol.1965.sp007660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVIS H. L., FOWLER W. S., LAMBERT E. H. Effect of volume and rate of inflation and deflation on transpulmonary pressure and response of pulmonary stretch receptors. Am J Physiol. 1956 Dec;187(3):558–566. doi: 10.1152/ajplegacy.1956.187.3.558. [DOI] [PubMed] [Google Scholar]
  9. DAWES G. S., MOTT J. C., WIDDICOMBE J. G. Respiratory and cardiovascular reflexes from the heart and lungs. J Physiol. 1951 Nov 28;115(3):258–291. doi: 10.1113/jphysiol.1951.sp004670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DE DALY M. B., SCOTT M. J. The effects of stimulation of the carotid body chemoreceptors on heart rate in the dog. J Physiol. 1958 Nov 10;144(1):148–166. doi: 10.1113/jphysiol.1958.sp006092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Daly M. D., Kirkman E. Cardiovascular responses to stimulation of pulmonary C fibres in the cat: their modulation by changes in respiration. J Physiol. 1988 Aug;402:43–63. doi: 10.1113/jphysiol.1988.sp017193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daly M. D., Ward J., Wood L. M. Modification by lung inflation of the vascular responses from the carotid body chemoreceptors and other receptors in dogs. J Physiol. 1986 Sep;378:13–30. doi: 10.1113/jphysiol.1986.sp016205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davidson N. S., Goldner S., McCloskey D. I. Respiratory modulation of barareceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol. 1976 Jul;259(2):523–530. doi: 10.1113/jphysiol.1976.sp011480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davies R. O., Kubin L., Pack A. I. Pulmonary stretch receptor relay neurones of the cat: location and contralateral medullary projections. J Physiol. 1987 Feb;383:571–585. doi: 10.1113/jphysiol.1987.sp016429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Donoghue S., Fox R. E., Kidd C., Koley B. N. The distribution in the cat brain stem of neurones activated by vagal nonmyelinated fibres from the heart and lungs. Q J Exp Physiol. 1981 Oct;66(4):391–404. doi: 10.1113/expphysiol.1981.sp002582. [DOI] [PubMed] [Google Scholar]
  16. Donoghue S., Garcia M., Jordan D., Spyer K. M. The brain-stem projections of pulmonary stretch afferent neurones in cats and rabbits. J Physiol. 1982 Jan;322:353–363. doi: 10.1113/jphysiol.1982.sp014041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gandevia S. C., McCloskey D. I., Potter E. K. Inhibition of baroreceptor and chemoreceptor reflexes on heart rate by afferents from the lungs. J Physiol. 1978 Mar;276:369–381. doi: 10.1113/jphysiol.1978.sp012240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilbey M. P., Jordan D., Richter D. W., Spyer K. M. Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J Physiol. 1984 Nov;356:65–78. doi: 10.1113/jphysiol.1984.sp015453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. JEWETT D. L. ACTIVITY OF SINGLE EFFERENT FIBRES IN THE CERVICAL VAGUS NERVE OF THE DOG, WITH SPECIAL REFERENCE TO POSSIBLE CARDIO-INHIBITORY FIBRES. J Physiol. 1964 Dec;175:321–357. doi: 10.1113/jphysiol.1964.sp007520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. James J. E., Daly M. de B. Cardiovascular responses in apnoeic asphyxia: role of arterial chemoreceptors and the modification of their effects by a pulmonary vagal inflation reflex. J Physiol. 1969 Mar;201(1):87–104. doi: 10.1113/jphysiol.1969.sp008744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jordan D., Spyer K. M. Brainstem integration of cardiovascular and pulmonary afferent activity. Prog Brain Res. 1986;67:295–314. doi: 10.1016/s0079-6123(08)62769-7. [DOI] [PubMed] [Google Scholar]
  22. Jordan D., Spyer K. M. Studies on the excitability of sinus nerve afferent terminals. J Physiol. 1979 Dec;297(0):123–134. doi: 10.1113/jphysiol.1979.sp013031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kalia M., Mesulam M. M. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980 Sep 15;193(2):467–508. doi: 10.1002/cne.901930211. [DOI] [PubMed] [Google Scholar]
  24. McAllen R. M., Spyer K. M. The baroreceptor input to cardiac vagal motoneurones. J Physiol. 1978 Sep;282:365–374. doi: 10.1113/jphysiol.1978.sp012469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McAllen R. M., Spyer K. M. The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J Physiol. 1976 Jun;258(1):187–204. doi: 10.1113/jphysiol.1976.sp011414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McAllen R. M., Spyer K. M. Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol. 1978 Sep;282:353–364. doi: 10.1113/jphysiol.1978.sp012468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mifflin S. W., Spyer K. M., Withington-Wray D. J. Baroreceptor inputs to the nucleus tractus solitarius in the cat: postsynaptic actions and the influence of respiration. J Physiol. 1988 May;399:349–367. doi: 10.1113/jphysiol.1988.sp017085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. PAINTAL A. S. The location and excitation of pulmonary deflation receptors by chemical substances. Q J Exp Physiol Cogn Med Sci. 1957 Jan;42(1):56–71. doi: 10.1113/expphysiol.1957.sp001243. [DOI] [PubMed] [Google Scholar]
  29. PAINTAL B. A. Impulses in vagal afferent fibres from specific pulmonary deflation receptors: the response of these receptors to phenyl diguanide, potato starch, 5-hydroxytryptamine and nicotine, and their rôle in respiratory and cardiovascular reflexes. Q J Exp Physiol Cogn Med Sci. 1955 Apr;40(2):89–111. doi: 10.1113/expphysiol.1955.sp001116. [DOI] [PubMed] [Google Scholar]
  30. Potter E. K. Inspiratory inhibition of vagal responses to baroreceptor and chemoreceptor stimuli in the dog. J Physiol. 1981 Jul;316:177–190. doi: 10.1113/jphysiol.1981.sp013781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Richter D. W. Generation and maintenance of the respiratory rhythm. J Exp Biol. 1982 Oct;100:93–107. doi: 10.1242/jeb.100.1.93. [DOI] [PubMed] [Google Scholar]
  32. Spyer K. M. Central nervous integration of cardiovascular control. J Exp Biol. 1982 Oct;100:109–128. doi: 10.1242/jeb.100.1.109. [DOI] [PubMed] [Google Scholar]
  33. Woolley D. C., McWilliam P. N., Ford T. W., Clarke R. W. The effect of selective electrical stimulation of non-myelinated vagal fibres on heart rate in the rabbit. J Auton Nerv Syst. 1987 Dec;21(2-3):215–221. doi: 10.1016/0165-1838(87)90024-5. [DOI] [PubMed] [Google Scholar]
  34. de Burgh Daly M., Ead H. W., Scott R. W. A small pulsatile perfusion pump-blood equilibrator system [proceedings]. J Physiol. 1978 Jul;280:6P–8P. [PubMed] [Google Scholar]
  35. de Burgh Daly M., Kirkman E., Wood L. M. Cardiovascular responses to stimulation of cardiac receptors in the cat and their modification by changes in respiration. J Physiol. 1988 Dec;407:349–362. doi: 10.1113/jphysiol.1988.sp017419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. de Burgh Daly M., Korner P. I., Angell-James J. E., Oliver J. A. Cardiovascular and respiratory effects of carotid body stimulation in the monkey. Clin Exp Pharmacol Physiol. 1978 Sep-Oct;5(5):511–524. doi: 10.1111/j.1440-1681.1978.tb00704.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES