Abstract
1. The effects of serotonin (5-HT) on visually identified motoneurones were investigated using the whole-cell recording technique in a neonatal rat spinal cord slice preparation. 2. In current-clamp recordings, bath application of 5-HT depolarized motoneurones. This effect was observed after synaptic inputs were abolished by replacing external Ca2+ with Mg2+. 3. In voltage-clamp recordings at holding potentials of -70 to -90 mV, 5-HT induced an inward current (I5-HT) in motoneurones in a Ca2(+)-free-Mg2+ solution containing tetrodotoxin. This inward current was accompanied by an increase in membrane conductance, which was prominent at voltages negative to the holding potential. 4. The inward I5-HT response declined with repeated short applications of 5-HT. I5-HT produced by a single prolonged application (5 min) was only slightly diminished during the application period. 5. The minimum effective dose of 5-HT for initiating the inward I5-HT was less than 10 nM. At 10 microM, I5-HT approached maximal levels. The averaged dissociation constant (Kd) for 5-HT was approximately 120 nM. 6. Application of spiperone, the mixed 5-HT1A, 5-HT2 receptor antagonist, blocked the inward I5-HT. Application of (+)-8-OH-dipropylaminotetralin (8-OHDPAT), a 5-HT1A agonist, mimicked the action of 5-HT. 7. Various K+ channel blockers including tetraethylammonium chloride (30 mM), 4-aminopyridine (4 mM) and apamin (100 nM) did not abolish I5-HT. Application of extracellular Cs+ (10 mM) blocked I5-HT. 8. Peak inward I5-HT became larger with increasing extracellular K+. With low Cl- pipette solution (less than 1 mM), or in low extracellular Na+ solution (26 mM), the inward I5-HT was not abolished. 9. The current-voltage relation of I5-HT displayed inward rectification. In high external K+ concentration (20 mM), the reversal potential was about -29 mV, which is close to that of the inward rectifier evoked in motoneurones by membrane hyperpolarization. 10. The current generated by 5-HT displayed similar characteristics to the inward rectifying current induced in motoneurones by membrane hyperpolarization. It is thus suggested that the 5-HT-induced current is possibly mediated by the intrinsic inward rectifier conductance.
Full text
PDF![63](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/eb7a35d41f47/jphysiol00469-0077.png)
![64](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/70d2df5bd155/jphysiol00469-0078.png)
![65](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/0e39ba85b62c/jphysiol00469-0079.png)
![66](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/e63abd86c3b3/jphysiol00469-0080.png)
![67](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/cf11fdefcd31/jphysiol00469-0081.png)
![68](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/5de2ac1c011f/jphysiol00469-0082.png)
![69](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/58fb6d1b275b/jphysiol00469-0083.png)
![70](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/a3eee5874de7/jphysiol00469-0084.png)
![71](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/64e76106a611/jphysiol00469-0085.png)
![72](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/2ad0fe12f688/jphysiol00469-0086.png)
![73](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/da45f7fe0beb/jphysiol00469-0087.png)
![74](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/b7a99a2cf6dd/jphysiol00469-0088.png)
![75](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/81232d2819ff/jphysiol00469-0089.png)
![76](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613d/1189746/06de7e7cfbef/jphysiol00469-0090.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrade R., Nicoll R. A. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol. 1987 Dec;394:99–124. doi: 10.1113/jphysiol.1987.sp016862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atsumi S., Sakamoto H., Yokota S., Fujiwara T. Substance P and 5-hydroxytryptamine immunoreactive presynaptic boutons on presumed alpha-motoneurons in the chicken ventral horn. Arch Histol Jpn. 1985 Apr;48(2):159–172. doi: 10.1679/aohc.48.159. [DOI] [PubMed] [Google Scholar]
- Barasi S., Roberts M. H. The modification of lumbar motoneurone excitability by stimulation of a putative 5-hydroxytryptamine pathway. Br J Pharmacol. 1974 Nov;52(3):339–348. doi: 10.1111/j.1476-5381.1974.tb08601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benson J. A., Levitan I. B. Serotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3522–3525. doi: 10.1073/pnas.80.11.3522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bobker D. H., Williams J. T. Serotonin augments the cationic current Ih in central neurons. Neuron. 1989 Jun;2(6):1535–1540. doi: 10.1016/0896-6273(89)90041-x. [DOI] [PubMed] [Google Scholar]
- Cardona A., Rudomin P. Activation of brainstem serotoninergic pathways decreases homosynaptic depression of monosynaptic responses of frog spinal motoneurons. Brain Res. 1983 Dec 5;280(2):373–378. doi: 10.1016/0006-8993(83)90070-7. [DOI] [PubMed] [Google Scholar]
- Colino A., Halliwell J. V. Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature. 1987 Jul 2;328(6125):73–77. doi: 10.1038/328073a0. [DOI] [PubMed] [Google Scholar]
- Conn P. J., Sanders-Bush E., Hoffman B. J., Hartig P. R. A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4086–4088. doi: 10.1073/pnas.83.11.4086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Constanti A., Galvan M. Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. J Physiol. 1983 Feb;335:153–178. doi: 10.1113/jphysiol.1983.sp014526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiFrancesco D., Ojeda C. Properties of the current if in the sino-atrial node of the rabbit compared with those of the current iK, in Purkinje fibres. J Physiol. 1980 Nov;308:353–367. doi: 10.1113/jphysiol.1980.sp013475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fargin A., Raymond J. R., Lohse M. J., Kobilka B. K., Caron M. G., Lefkowitz R. J. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature. 1988 Sep 22;335(6188):358–360. doi: 10.1038/335358a0. [DOI] [PubMed] [Google Scholar]
- Fulton B. P., Walton K. Electrophysiological properties of neonatal rat motoneurones studied in vitro. J Physiol. 1986 Jan;370:651–678. doi: 10.1113/jphysiol.1986.sp015956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerschenfeld H. M., Paupardin-Tritsch D. Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine. J Physiol. 1974 Dec;243(2):427–456. doi: 10.1113/jphysiol.1974.sp010761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gozlan H., El Mestikawy S., Pichat L., Glowinski J., Hamon M. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature. 1983 Sep 8;305(5930):140–142. doi: 10.1038/305140a0. [DOI] [PubMed] [Google Scholar]
- Gundersen C. B., Miledi R., Parker I. Serotonin receptors induced by exogenous messenger RNA in Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1983 Aug 22;219(1214):103–109. doi: 10.1098/rspb.1983.0062. [DOI] [PubMed] [Google Scholar]
- Hagiwara S., Miyazaki S., Moody W., Patlak J. Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol. 1978 Jun;279:167–185. doi: 10.1113/jphysiol.1978.sp012338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halliwell J. V., Adams P. R. Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 1982 Oct 28;250(1):71–92. doi: 10.1016/0006-8993(82)90954-4. [DOI] [PubMed] [Google Scholar]
- Holtman J. R., Jr, Dick T. E., Berger A. J. Involvement of serotonin in the excitation of phrenic motoneurons evoked by stimulation of the raphe obscurus. J Neurosci. 1986 Apr;6(4):1185–1193. doi: 10.1523/JNEUROSCI.06-04-01185.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hounsgaard J., Hultborn H., Jespersen B., Kiehn O. Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J Physiol. 1988 Nov;405:345–367. doi: 10.1113/jphysiol.1988.sp017336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hounsgaard J., Kiehn O. Ca++ dependent bistability induced by serotonin in spinal motoneurons. Exp Brain Res. 1985;57(2):422–425. doi: 10.1007/BF00236551. [DOI] [PubMed] [Google Scholar]
- Huang J. C., Peroutka S. J. Identification of 5-hydroxytryptamine binding site subtypes in rat spinal cord. Brain Res. 1987 Dec 8;436(1):173–176. doi: 10.1016/0006-8993(87)91572-1. [DOI] [PubMed] [Google Scholar]
- Hugues M., Romey G., Duval D., Vincent J. P., Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1308–1312. doi: 10.1073/pnas.79.4.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julius D., MacDermott A. B., Axel R., Jessell T. M. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science. 1988 Jul 29;241(4865):558–564. doi: 10.1126/science.3399891. [DOI] [PubMed] [Google Scholar]
- Klein M., Camardo J., Kandel E. R. Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5713–5717. doi: 10.1073/pnas.79.18.5713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lotshaw D. P., Levitan I. B. Reciprocal modulation of calcium current by serotonin and dopamine in the identified Aplysia neuron R15. Brain Res. 1988 Jan 26;439(1-2):64–76. doi: 10.1016/0006-8993(88)91462-x. [DOI] [PubMed] [Google Scholar]
- McCall R. B., Aghajanian G. K. Serotonergic facilitation of facial motoneuron excitation. Brain Res. 1979 Jun 15;169(1):11–27. doi: 10.1016/0006-8993(79)90370-6. [DOI] [PubMed] [Google Scholar]
- Monroe P. J., Smith D. J. Characterization of multiple [3H]5-hydroxytryptamine binding sites in rat spinal cord tissue. J Neurochem. 1983 Aug;41(2):349–355. doi: 10.1111/j.1471-4159.1983.tb04749.x. [DOI] [PubMed] [Google Scholar]
- Pape H. C., McCormick D. A. Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature. 1989 Aug 31;340(6236):715–718. doi: 10.1038/340715a0. [DOI] [PubMed] [Google Scholar]
- Paupardin-Tritsch D., Deterre P., Gerschenfeld H. M. Relationship between two voltage-dependent serotonin responses of molluscan neurones. Brain Res. 1981 Jul 27;217(1):201–206. doi: 10.1016/0006-8993(81)90201-8. [DOI] [PubMed] [Google Scholar]
- Peroutka S. J., Snyder S. H. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol. 1979 Nov;16(3):687–699. [PubMed] [Google Scholar]
- Steinbusch H. W. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience. 1981;6(4):557–618. doi: 10.1016/0306-4522(81)90146-9. [DOI] [PubMed] [Google Scholar]
- Takahashi T. Inhibitory miniature synaptic potentials in rat motoneurons. Proc R Soc Lond B Biol Sci. 1984 Mar 22;221(1222):103–109. doi: 10.1098/rspb.1984.0025. [DOI] [PubMed] [Google Scholar]
- Takahashi T. Inward rectification in neonatal rat spinal motoneurones. J Physiol. 1990 Apr;423:47–62. doi: 10.1113/jphysiol.1990.sp018010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi T. Membrane currents in visually identified motoneurones of neonatal rat spinal cord. J Physiol. 1990 Apr;423:27–46. doi: 10.1113/jphysiol.1990.sp018009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi T., Neher E., Sakmann B. Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5063–5067. doi: 10.1073/pnas.84.14.5063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VanderMaelen C. P., Aghajanian G. K. Intracellular studies showing modulation of facial motoneurone excitability by serotonin. Nature. 1980 Sep 25;287(5780):346–347. doi: 10.1038/287346a0. [DOI] [PubMed] [Google Scholar]
- White S. R., Neuman R. S. Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline. Brain Res. 1980 Apr 21;188(1):119–127. doi: 10.1016/0006-8993(80)90561-2. [DOI] [PubMed] [Google Scholar]
- Williams J. T., Colmers W. F., Pan Z. Z. Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. J Neurosci. 1988 Sep;8(9):3499–3506. doi: 10.1523/JNEUROSCI.08-09-03499.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagihara K., Irisawa H. Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflugers Arch. 1980 May;385(1):11–19. doi: 10.1007/BF00583909. [DOI] [PubMed] [Google Scholar]
- Zhang L., Krnjević K. Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons. Neurosci Lett. 1987 Feb 10;74(1):58–62. doi: 10.1016/0304-3940(87)90051-6. [DOI] [PubMed] [Google Scholar]