Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Jan;408:571–586. doi: 10.1113/jphysiol.1989.sp017477

Ventrolateral medullary neurones: effects on magnitude and rhythm of discharge of mesenteric and renal nerves in cats.

R D Stein 1, L C Weaver 1, C P Yardley 1
PMCID: PMC1190421  PMID: 2778740

Abstract

1. Discharge of whole mesenteric and renal nerves was recorded in eighteen chloralose-anaesthetized, artificially respired cats. 2. Inhibition of tonic activity of neurones within the rostral ventrolateral medulla (RVLM blockade) by bilateral application of glycine caused significant reductions in discharge of renal and mesenteric nerves, arterial blood pressure and heart rate. The decrease in discharge of renal nerves was significantly greater than that of mesenteric nerves. 3. During the response to glycine application, the spinal cord was transected at the first cervical segment. The magnitude of renal nerve discharge after transection was not different from that during blockade of the RVLM. On the other hand, mesenteric nerve activity increased following spinal cord transection, returning to control levels. 4. Power spectral analysis revealed that mesenteric and renal nerves discharged with periodicities ranging from 1 to 6 Hz. Application of glycine to the RVLM reduced the slow rhythm in firing of mesenteric and renal nerves similarly. Transection of the spinal cord resulted in further reduction in the rhythmicity in discharge of both nerves. 5. The results indicate that excitatory drive from the RVLM is crucial for the maintenance of on-going discharge of renal, but not of mesenteric nerves. However, such inputs are apparently essential to maintain the slow rhythm in firing of both nerves.

Full text

PDF
585

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amendt K., Czachurski J., Dembowsky K., Seller H. Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J Auton Nerv Syst. 1979 Oct;1(1):103–107. doi: 10.1016/0165-1838(79)90009-2. [DOI] [PubMed] [Google Scholar]
  2. Ardell J. L., Barman S. M., Gebber G. L. Sympathetic nerve discharge in chronic spinal cat. Am J Physiol. 1982 Sep;243(3):H463–H470. doi: 10.1152/ajpheart.1982.243.3.H463. [DOI] [PubMed] [Google Scholar]
  3. Barman S. M., Gebber G. L. Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. J Neurophysiol. 1985 Jun;53(6):1551–1566. doi: 10.1152/jn.1985.53.6.1551. [DOI] [PubMed] [Google Scholar]
  4. Barman S. M., Gebber G. L., Calaresu F. R. Differential control of sympathetic nerve discharge by the brain stem. Am J Physiol. 1984 Sep;247(3 Pt 2):R513–R519. doi: 10.1152/ajpregu.1984.247.3.R513. [DOI] [PubMed] [Google Scholar]
  5. Barman S. M., Gebber G. L. Sequence of activation of ventrolateral and dorsal medullary sympathetic neurons. Am J Physiol. 1983 Sep;245(3):R438–R447. doi: 10.1152/ajpregu.1983.245.3.R438. [DOI] [PubMed] [Google Scholar]
  6. Barman S. M., Gebber G. L. Tonic sympathoinhibition in the baroreceptor denervated cat. Proc Soc Exp Biol Med. 1978 Apr;157(4):648–655. doi: 10.3181/00379727-157-40114. [DOI] [PubMed] [Google Scholar]
  7. Dampney R. A., McAllen R. M. Differential control of sympathetic fibres supplying hindlimb skin and muscle by subretrofacial neurones in the cat. J Physiol. 1988 Jan;395:41–56. doi: 10.1113/jphysiol.1988.sp016907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dean C., Coote J. H. A ventromedullary relay involved in the hypothalamic and chemoreceptor activation of sympathetic postganglionic neurones to skeletal muscle, kidney and splanchnic area. Brain Res. 1986 Jul 9;377(2):279–285. doi: 10.1016/0006-8993(86)90869-3. [DOI] [PubMed] [Google Scholar]
  9. Dembowsky K., Czachurski J., Amendt K., Seller H. Tonic descending inhibition of the spinal somato-sympathetic reflex from the lower brain stem. J Auton Nerv Syst. 1980 Jul;2(2):157–182. doi: 10.1016/0165-1838(80)90043-0. [DOI] [PubMed] [Google Scholar]
  10. Dembowsky K., Czachurski J., Seller H. Three types of sympathetic preganglionic neurones with different electrophysiological properties are identified by intracellular recordings in the cat. Pflugers Arch. 1986 Feb;406(2):112–120. doi: 10.1007/BF00586671. [DOI] [PubMed] [Google Scholar]
  11. Dostrovsky J. O., Millar J., Wall P. D. The immediate shift of afferent drive to dorsal column nucleus cells following deafferentation: a comparison of acute and chronic deafferentation in gracile nucleus and spinal cord. Exp Neurol. 1976 Sep;52(3):480–495. doi: 10.1016/0014-4886(76)90219-3. [DOI] [PubMed] [Google Scholar]
  12. Gootman P. M., Cohen M. I. Sympathetic rhythms in spinal cats. J Auton Nerv Syst. 1981 Apr;3(2-4):379–387. doi: 10.1016/0165-1838(81)90076-x. [DOI] [PubMed] [Google Scholar]
  13. Guertzenstein P. G. Blood pressure effects obtained by drugs applied to the ventral surface of the brain stem. J Physiol. 1973 Mar;229(2):395–408. doi: 10.1113/jphysiol.1973.sp010145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guertzenstein P. G., Silver A. Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol. 1974 Oct;242(2):489–503. doi: 10.1113/jphysiol.1974.sp010719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hilton S. M., Marshall J. M., Timms R. J. Ventral medullary relay neurones in the pathway from the defence areas of the cat and their effect on blood pressure. J Physiol. 1983 Dec;345:149–166. doi: 10.1113/jphysiol.1983.sp014971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jänig W. Organization of the lumbar sympathetic outflow to skeletal muscle and skin of the cat hindlimb and tail. Rev Physiol Biochem Pharmacol. 1985;102:119–213. doi: 10.1007/BFb0034086. [DOI] [PubMed] [Google Scholar]
  17. Lovick T. A. Differential control of cardiac and vasomotor activity by neurones in nucleus paragigantocellularis lateralis in the cat. J Physiol. 1987 Aug;389:23–35. doi: 10.1113/jphysiol.1987.sp016644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McAllen R. M. Action and specificity of ventral medullary vasopressor neurones in the cat. Neuroscience. 1986 May;18(1):51–59. doi: 10.1016/0306-4522(86)90178-8. [DOI] [PubMed] [Google Scholar]
  19. McCall R. B., Harris L. T. Sympathetic alterations after midline medullary raphe lesions. Am J Physiol. 1987 Jul;253(1 Pt 2):R91–100. doi: 10.1152/ajpregu.1987.253.1.R91. [DOI] [PubMed] [Google Scholar]
  20. Meckler R. L., Weaver L. C. Characteristics of ongoing and reflex discharge of single splenic and renal sympathetic postganglionic fibres in cats. J Physiol. 1988 Feb;396:139–153. doi: 10.1113/jphysiol.1988.sp016955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Meckler R. L., Weaver L. C. Splenic, renal, and cardiac nerves have unequal dependence upon tonic supraspinal inputs. Brain Res. 1985 Jul 8;338(1):123–135. doi: 10.1016/0006-8993(85)90254-9. [DOI] [PubMed] [Google Scholar]
  22. Nilsson H., Ljung B., Sjöblom N., Wallin B. G. The influence of the sympathetic impulse pattern on contractile responses of rat mesenteric arteries and veins. Acta Physiol Scand. 1985 Mar;123(3):303–309. doi: 10.1111/j.1748-1716.1985.tb07592.x. [DOI] [PubMed] [Google Scholar]
  23. Pilowsky P., West M., Chalmers J. Renal sympathetic nerve responses to stimulation, inhibition and destruction of the ventrolateral medulla in the rabbit. Neurosci Lett. 1985 Sep 16;60(1):51–55. doi: 10.1016/0304-3940(85)90380-5. [DOI] [PubMed] [Google Scholar]
  24. Ross C. A., Ruggiero D. A., Park D. H., Joh T. H., Sved A. F., Fernandez-Pardal J., Saavedra J. M., Reis D. J. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci. 1984 Feb;4(2):474–494. doi: 10.1523/JNEUROSCI.04-02-00474.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stein R. D., Weaver L. C. Multi- and single-fibre mesenteric and renal sympathetic responses to chemical stimulation of intestinal receptors in cats. J Physiol. 1988 Feb;396:155–172. doi: 10.1113/jphysiol.1988.sp016956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Szurszewski J. H. Physiology of mammalian prevertebral ganglia. Annu Rev Physiol. 1981;43:53–68. doi: 10.1146/annurev.ph.43.030181.000413. [DOI] [PubMed] [Google Scholar]
  27. Taylor R. F., Schramm L. P. Differential effects of spinal transection on sympathetic nerve activities in rats. Am J Physiol. 1987 Oct;253(4 Pt 2):R611–R618. doi: 10.1152/ajpregu.1987.253.4.R611. [DOI] [PubMed] [Google Scholar]
  28. Willette R. N., Punnen-Grandy S., Krieger A. J., Sapru H. N. Differential regulation of regional vascular resistance by the rostral and caudal ventrolateral medulla in the rat. J Auton Nerv Syst. 1987 Feb;18(2):143–151. doi: 10.1016/0165-1838(87)90101-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES