Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Oct;404:535–546. doi: 10.1113/jphysiol.1988.sp017304

Dose-response effects of pressor doses of arginine vasopressin on renal haemodynamics in the rat.

A J McVicar 1
PMCID: PMC1190840  PMID: 3253442

Abstract

1. Dose-response effects of arginine vasopressin on renal haemodynamics were studied in conscious and in pentobarbitone-anaesthetized rats infused with 77 mM-NaCl at 5.2 and 2.6 ml h-1 respectively. 2. Vasopressin at 0.8 pmol h-1 (100 g body weight)-1 did not have a significant effect on arterial blood pressure in conscious or anaesthetized rats. Increasing the dose to 2.5 pmol h-1 (100 g body weight)-1 induced a pressor effect in conscious rats but not in anaesthetized rats. A pressor response was observed in the latter at a dose of 10 pmol h-1 (100 g body weight)-1. 3. Pressor doses of vasopressin of 100 pmol h-1 (100 g body weight)-1 and less did not significantly alter the clearance of p-aminohippurate (PAH) in either conscious or anaesthetized rats. A dose of 1000 pmol h-1 (100 g body weight)-1 significantly decreased PAH clearance in both conscious and anaesthetized animals. 4. Inulin clearance was unchanged by non-pressor doses of vasopressin in both conscious and anaesthetized rats. Moderately pressor doses decreased inulin clearance in conscious animals only. The highest dose administered (1000 pmol h-1 (100 g body weight)-1) decreased inulin clearance in both conscious and anaesthetized rats. 5. Pressor doses of vasopressin had a biphasic effect on the filtration fraction in conscious rats. The filtration fraction decreased with doses of vasopressin at the lower end of the pressor range but increased with the highest dose of 1000 pmol h-1 (100 g body weight)-1. In contrast the filtration fraction did not change significantly with moderate pressor doses in anaesthetized rats but was increased by doses of 100 and 1000 pmol h-1 (100 g body weight)-1. 6. It is concluded that pressor doses of vasopressin lower than 100 pmol h-1 (100 g body weight)-1 do not decrease renal plasma flow rate in conscious or pentobarbitone-anaesthetized rats. The results suggest that the inconsistent effects of vasopressin on renal blood flow reported in the literature are due, at least in part, to the wide range of doses used.

Full text

PDF
535

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atherton J. C., Green R., Thomas S. Influence of lysine-vasopressin dosage on the time course of changes in renal tissue and urinary composition in the conscious rat. J Physiol. 1971 Mar;213(2):291–309. doi: 10.1113/jphysiol.1971.sp009383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azzawi S. A., Shirley D. G. The effect of vasopressin on renal blood flow and its distribution in the rat. J Physiol. 1983 Aug;341:233–244. doi: 10.1113/jphysiol.1983.sp014803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BOJESEN E. A method for determination of inulin in plasma and urine. Acta Med Scand Suppl. 1952;266:275–282. doi: 10.1111/j.0954-6820.1952.tb13376.x. [DOI] [PubMed] [Google Scholar]
  4. Ferwana O. S., Pirie S. C. Unilateral renal ischaemia in the rat: effect of method of occlusion of the blood supply on function of ipsilateral and contralateral kidneys. Clin Sci (Lond) 1987 Jul;73(1):11–17. doi: 10.1042/cs0730011. [DOI] [PubMed] [Google Scholar]
  5. Haylor J., Lote C. J. Renal function in conscious rats after indomethacin. Evidence for a tubular action of endogenous prostaglandins. J Physiol. 1980 Jan;298:371–381. doi: 10.1113/jphysiol.1980.sp013087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heyndrickx G. R., Boettcher D. H., Vatner S. F. Effects of angiotensin, vasopressin, and methoxamine on cardiac function and blood flow distribution in conscious dogs. Am J Physiol. 1976 Nov;231(5 Pt 1):1579–1587. doi: 10.1152/ajplegacy.1976.231.5.1579. [DOI] [PubMed] [Google Scholar]
  7. Hofbauer K. G., Dienemann H., Forgiarini P., Stalder R., Wood J. M. Renal vascular effects of angiotensin II, arginine-vasopressin and bradykinin in rats: interactions with prostaglandins. Gen Pharmacol. 1983;14(1):145–147. doi: 10.1016/0306-3623(83)90086-1. [DOI] [PubMed] [Google Scholar]
  8. Hoffman W. E. Regional vascular effects of antidiuretic hormone in normal and sympathetic blocked rats. Endocrinology. 1980 Jul;107(1):334–341. doi: 10.1210/endo-107-1-334. [DOI] [PubMed] [Google Scholar]
  9. Humphreys M. H., Friedler R. M., Earley L. E. Natrriuresis produced by vasopressin or hemorrhage during water diuresis in the dog. Am J Physiol. 1970 Sep;219(3):658–665. doi: 10.1152/ajplegacy.1970.219.3.658. [DOI] [PubMed] [Google Scholar]
  10. Kramp R. A., MacDowell M., Gottschalk C. W., Oliver J. R. A study by microdissection and micropuncture of the structure and the function of the kidneys and the nephrons of rats with chronic renal damage. Kidney Int. 1974 Feb;5(2):147–176. doi: 10.1038/ki.1974.19. [DOI] [PubMed] [Google Scholar]
  11. Liard J. F., Dériaz O., Schelling P., Thibonnier M. Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs. Am J Physiol. 1982 Nov;243(5):H663–H669. doi: 10.1152/ajpheart.1982.243.5.H663. [DOI] [PubMed] [Google Scholar]
  12. Liard J. F. Vasopressin in cardiovascular control: role of circulating vasopressin. Clin Sci (Lond) 1984 Nov;67(5):473–481. doi: 10.1042/cs0670473. [DOI] [PubMed] [Google Scholar]
  13. Lote C. J., McVicar A. J., Thewles A. Renal haemodynamic actions of pressor doses of lysine vasopressin in the rat. J Physiol. 1987 Oct;391:407–418. doi: 10.1113/jphysiol.1987.sp016745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oliver J. A., Sciacca R. R., Le Cren G., Cannon P. J. Modulation by prostaglandins of the renal vascular action of arginine vasopressin. Prostaglandins. 1982 Nov;24(5):641–656. doi: 10.1016/0090-6980(82)90034-x. [DOI] [PubMed] [Google Scholar]
  15. SELKURT E. E. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation. 1951 Oct;4(4):541–551. doi: 10.1161/01.cir.4.4.541. [DOI] [PubMed] [Google Scholar]
  16. Sadowski J., Kurkus J., Gellert R. Denervated and intact kidney responses to saline load in awake and anesthetized dogs. Am J Physiol. 1979 Oct;237(4):F262–F267. doi: 10.1152/ajprenal.1979.237.4.F262. [DOI] [PubMed] [Google Scholar]
  17. Schmid P. G., Abboud F. M., Wendling M. G., Ramberg E. S., Mark A. L., Heistad D. D., Eckstein J. W. Regional vascular effects of vasopressin: plasma levels and circulatory responses. Am J Physiol. 1974 Nov;227(5):998–1004. doi: 10.1152/ajplegacy.1974.227.5.998. [DOI] [PubMed] [Google Scholar]
  18. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walker L. A., Whorton A. R., Smigel M., France R., Frölich J. C. Antidiuretic hormone increases renal prostaglandin synthesis in vivo. Am J Physiol. 1978 Sep;235(3):F180–F185. doi: 10.1152/ajprenal.1978.235.3.F180. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES